勾股定理知識(shí)歸納勾股定理的應(yīng)用
勾股定理知識(shí)歸納勾股定理的應(yīng)用
勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一,用代數(shù)思想解決幾何問題的最重要的工具之一,以下是由學(xué)習(xí)啦小編整理關(guān)于勾股定理知識(shí)歸納的內(nèi)容,希望大家喜歡!
一、勾股定理
1、勾股定理內(nèi)容:如果直角三角形的兩直角邊長分別為a,斜邊長為c,那么a2+b2=c2,即直角三角形兩直角邊的平方和等于斜邊的平方。
2、勾股定理的證明:
勾股定理的證明方法很多,常見的是拼圖的方法
用拼圖的方法驗(yàn)證勾股定理的思路是:
(1)圖形進(jìn)過割補(bǔ)拼接后,只要沒有重疊,沒有空隙,面積不會(huì)改變;
(2)根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導(dǎo)出勾股定理。
4、勾股定理的適用范圍:
勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關(guān)系,它只適用于直角三角形,對(duì)于銳角三角形和鈍角三角形的三邊就不具有這一特征。
二、勾股定理的逆定理
1、逆定理的內(nèi)容:如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形,其中c為斜邊。
說明:(1)勾股定理的逆定理是判定一個(gè)三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能形狀,在運(yùn)用這一定理時(shí),可用兩小邊的平方和與較長邊的平方作比較,若它們相等時(shí),以a,b,c為三邊的三角形是直角三角形;
(2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時(shí)的斜邊是b、
2、利用勾股定理的逆定理判斷一個(gè)三角形是否為直角三角形的一般步驟:
(1)確定最大邊;
(2)算出最大邊的平方與另兩邊的平方和;
(3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。
三、勾股數(shù)
能夠構(gòu)成直角三角形的三邊長的三個(gè)正整數(shù)稱為勾股數(shù)、
四、勾股定理的一個(gè)重要結(jié)論
由直角三角形三邊為邊長所構(gòu)成的三個(gè)正方形滿足“兩個(gè)較小面積和等于較大面積”。
五、勾股定理及其逆定理的應(yīng)用
解決圓柱側(cè)面兩點(diǎn)間的距離問題、航海問題,折疊問題、梯子下滑問題等,常直接間接運(yùn)用勾股定理及其逆定理的應(yīng)用。
常見考法
(1)直接考查勾股定理及其逆定理;(2)應(yīng)用勾股定理建立方程;(3)實(shí)際問題中應(yīng)用勾股定理及其逆定理。
誤區(qū)提醒
(1)忽略勾股定理的適用范圍;(2)誤以為直角三角形中的一邊是斜邊。
六、勾股定理的意義
1、勾股定理的證明是論證幾何的發(fā)端;
2、勾股定理是歷史上第一個(gè)把數(shù)與形聯(lián)系起來的定理,即它是第一個(gè)把幾何與代數(shù)聯(lián)系起來的定理;
3、勾股定理導(dǎo)致了無理數(shù)的發(fā)現(xiàn),引起第一次數(shù)學(xué)危機(jī),大大加深了人們對(duì)數(shù)的理解;
4、勾股定理是歷史上第—個(gè)給出了完全解答的不定方程,它引出了費(fèi)馬大定理;
5、勾股定理是歐氏幾何的基礎(chǔ)定理,并有巨大的實(shí)用價(jià)值.這條定理不僅在幾何學(xué)中是一顆光彩奪目的明珠,被譽(yù)為“幾何學(xué)的基石”,而且在高等數(shù)學(xué)和其他科學(xué)領(lǐng)域也有著廣泛的應(yīng)用.1971年5月15日,尼加拉瓜發(fā)行了一套題為“改變世界面貌的十個(gè)數(shù)學(xué)公式”郵票,這十個(gè)數(shù)學(xué)公式由著名數(shù)學(xué)家選出的,勾股定理是其中之首。
看過“勾股定理知識(shí)歸納“的人還看了:
1.怎樣證明勾股定理
2.高一數(shù)學(xué)勾股定理知識(shí)點(diǎn)總結(jié)