初二上冊(cè)三角形全等知識(shí)點(diǎn)總結(jié)歸納
初二上冊(cè)三角形全等知識(shí)點(diǎn)總結(jié)歸納
今天小編帶來初二年級(jí)的三角形全等知識(shí)點(diǎn)總結(jié),現(xiàn)在初二的同學(xué)們已經(jīng)開始學(xué)習(xí)全等三角形了吧,大家一定要認(rèn)真學(xué)。一起來看看吧,以下是學(xué)習(xí)啦小編分享給大家的初二上冊(cè)三角形全等知識(shí)點(diǎn),希望可以幫到你!
初二上冊(cè)三角形全等知識(shí)點(diǎn)一
全等三角形
一、知識(shí)框架:
二、知識(shí)概念:
1.基本定義:
?、湃刃危耗軌蛲耆睾系膬蓚€(gè)圖形叫做全等形.
⑵全等三角形:能夠完全重合的兩個(gè)三角形叫做全等三角形.
?、菍?duì)應(yīng)頂點(diǎn):全等三角形中互相重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn).[來源:學(xué)科網(wǎng)ZX⑷對(duì)應(yīng)邊:全等三角形中互相重合的邊叫做對(duì)應(yīng)邊.
⑸對(duì)應(yīng)角:全等三角形中互相重合的角叫做對(duì)應(yīng)角.
2.基本性質(zhì):
?、湃切蔚姆€(wěn)定性:三角形三邊的長度確定了,這個(gè)三角形的形狀、大小就全確定,這個(gè)性質(zhì)叫做三角形的穩(wěn)定性.
?、迫热切蔚男再|(zhì):全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等.
3.全等三角形的判定定理:
?、胚呥呥?SSS):三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
⑵邊角邊(SAS):兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等.
?、墙沁吔?ASA):兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等.[
⑷角角邊(AAS):兩角和其中一個(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等.
?、尚边?、直角邊(HL):斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等.
如果只看這些還是有些看不懂的話,數(shù)姐暑期推送的導(dǎo)學(xué)案送給你,可以詳細(xì)看哈
暑期充電站 | 新初二中考熱點(diǎn):全等三角形的判定
暑期充電站 | 新初二,第五課:全等三角形導(dǎo)學(xué)案
4.角平分線:
1性質(zhì)定理:角平分線上的點(diǎn)到角的兩邊的距離相等.
2性質(zhì)定理的逆定理:角的內(nèi)部到角的兩邊距離相等的點(diǎn)在角的平分線上.
5.證明的基本方法:
?、琶鞔_命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關(guān)系)[來源:學(xué)科網(wǎng)
?、聘鶕?jù)題意,畫出圖形,并用數(shù)字符號(hào)表示已知和求證.
?、墙?jīng)過分析,找出由已知推出求證的途徑,寫出證明過程.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):應(yīng)用全等三角形性質(zhì)與判定定理解決實(shí)際問題.
2.難點(diǎn):分析思路的形成.
3.關(guān)鍵:明確全等三角形的應(yīng)用思想,養(yǎng)成說理有據(jù)的意識(shí).
全等三角形是初二數(shù)學(xué)比較重要的知識(shí)點(diǎn),也是中考數(shù)學(xué)必考點(diǎn),本文是全等三角形重點(diǎn)知識(shí)總結(jié),建議大家收藏,平時(shí)要多注意記記公式~
初二上冊(cè)三角形全等知識(shí)點(diǎn)二
全等三角形
一、知識(shí)框架:
二、知識(shí)概念:
1.基本定義:
?、湃刃危耗軌蛲耆睾系膬蓚€(gè)圖形叫做全等形。
⑵全等三角形:能夠完全重合的兩個(gè)三角形叫做全等三角形。
⑶對(duì)應(yīng)頂點(diǎn):全等三角形中互相重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn)。
?、葘?duì)應(yīng)邊:全等三角形中互相重合的邊叫做對(duì)應(yīng)邊。
?、蓪?duì)應(yīng)角:全等三角形中互相重合的角叫做對(duì)應(yīng)角。
2.基本性質(zhì):
?、湃切蔚姆€(wěn)定性:三角形三邊的長度確定了,這個(gè)三角形的形狀、大小就全確定,這個(gè)性質(zhì)叫做三角形的穩(wěn)定性。
⑵全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等。
3.全等三角形的判定定理:
?、胚呥呥?SSS):三邊對(duì)應(yīng)相等的兩個(gè)三角形全等。
?、七吔沁?SAS):兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等。
⑶角邊角(ASA):兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等。
⑷角角邊(AAS):兩角和其中一個(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等。
?、尚边?、直角邊(HL):斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等。
4.角平分線:
?、女嫹ǎ?/p>
?、菩再|(zhì)定理:角平分線上的點(diǎn)到角的兩邊的距離相等。
⑶性質(zhì)定理的逆定理:角的內(nèi)部到角的兩邊距離相等的點(diǎn)在角的平分線上。
5.證明的基本方法:
?、琶鞔_命題中的已知和求證(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關(guān)系)
⑵根據(jù)題意,畫出圖形,并用數(shù)字符號(hào)表示已知和求證。
?、墙?jīng)過分析,找出由已知推出求證的途徑,寫出證明過程。
初二上冊(cè)三角形全等知識(shí)點(diǎn)三
軸對(duì)稱
一、知識(shí)框架:
二、知識(shí)概念:
1.基本概念:
⑴軸對(duì)稱圖形:如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱圖形。
?、苾蓚€(gè)圖形成軸對(duì)稱:把一個(gè)圖形沿某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這條直線對(duì)稱。
?、蔷€段的垂直平分線:經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線。
⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角。
?、傻冗吶切危喝龡l邊都相等的三角形叫做等邊三角形。
2.基本性質(zhì):
⑴對(duì)稱的性質(zhì):
?、俨还苁禽S對(duì)稱圖形還是兩個(gè)圖形關(guān)于某條直線對(duì)稱,對(duì)稱軸都是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。
?、趯?duì)稱的圖形都全等
?、凭€段垂直平分線的性質(zhì):
①線段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等
?、谂c一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上
?、顷P(guān)于坐標(biāo)軸對(duì)稱的點(diǎn)的坐標(biāo)性質(zhì)
①點(diǎn)P(x,y)關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo)為
?、邳c(diǎn)P(x,y)關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo)為
?、鹊妊切蔚男再|(zhì):
?、俚妊切蝺裳嗟?/p>
?、诘妊切蝺傻捉窍嗟?等邊對(duì)等角)
?、鄣妊切蔚捻斀墙瞧椒志€、底邊上的中線,底邊上的高相互重合
④等腰三角形是軸對(duì)稱圖形,對(duì)稱軸是三線合一(1條
?、傻冗吶切蔚男再|(zhì):
?、俚冗吶切稳叾枷嗟?/p>
②等邊三角形三個(gè)內(nèi)角都相等,都等于60°
③等邊三角形每條邊上都存在三線合一
?、艿冗吶切问禽S對(duì)稱圖形,對(duì)稱軸是三線合一(3條)
3.基本判定:
⑴等腰三角形的判定:
?、儆袃蓷l邊相等的三角形是等腰三角形
?、谌绻粋€(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
?、频冗吶切蔚呐卸ǎ?/p>
?、偃龡l邊都相等的三角形是等邊三角形
②三個(gè)角都相等的三角形是等邊三角形
?、塾幸粋€(gè)角是60°的等腰三角形是等邊三角形
4.基本方法:
?、抛鲆阎本€的垂線:
?、谱鲆阎€段的垂直平分線:
⑶作對(duì)稱軸:連接兩個(gè)對(duì)應(yīng)點(diǎn),作所連線段的垂直平分線
?、茸饕阎獔D形關(guān)于某直線的對(duì)稱圖形:
?、稍谥本€上做一點(diǎn),使它到該直線同側(cè)的兩個(gè)已知點(diǎn)的距離之和最短。
猜你喜歡:
1.初中數(shù)學(xué)課堂全等三角形教學(xué)案例分析
3.八年級(jí)數(shù)學(xué)全等三角形測(cè)試題