八年級(jí)數(shù)學(xué)下冊復(fù)習(xí)提綱
八年級(jí)數(shù)學(xué)下冊復(fù)習(xí)提綱
八年級(jí)數(shù)學(xué)下冊復(fù)習(xí)提綱有哪些?期末想考好數(shù)學(xué),一份好的復(fù)習(xí)資料是少不了的。下面是學(xué)習(xí)啦小編分享給大家的八年級(jí)數(shù)學(xué)下冊復(fù)習(xí)提綱的資料,希望大家喜歡!
八年級(jí)數(shù)學(xué)下冊復(fù)習(xí)提綱第一章 一元一次不等式和一元一次不等式組
一、一般地,用符號(hào)(或),(或)連接的式子叫做不等式.
能使不等式成立的未知數(shù)的值,叫做不等式的解. 不等式的解不唯一,把所有滿足不等式的解集合在一起,構(gòu)成不等式的解集. 求不等式解集的過程叫解不等式.
由幾個(gè)一元一次不等式組所組成的不等式組叫做一元一次不等式組
不等式組的解集 :一元一次不等式組各個(gè)不等式的解集的公共部分.
等式基本性質(zhì)1:在等式的兩邊都加上(或減去)同一個(gè)數(shù)或整式,所得的結(jié)果仍是等式. 基本性質(zhì)2:在等式的兩邊都乘以或除以同一個(gè)數(shù)(除數(shù)不為0),所得的結(jié)果仍是等式.
二、不等式的基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)整式,不等號(hào)的方向不變. (注:移項(xiàng)要變號(hào),但不等號(hào)不變.)性質(zhì)2:不等式的兩邊都乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變.性質(zhì)3:不等式的兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變.不等式的基本性質(zhì)1、 若ab, 則a+cb+c;2、若ab, c0 則acbc若c0, 則ac不等式的其他性質(zhì):反射性:若ab,則bb,且bc,則ac
三、解不等式的步驟:1、去分母; 2、去括號(hào); 3、移項(xiàng)合并同類項(xiàng); 4、系數(shù)化為1.
四、解不等式組的步驟:1、解出不等式的解集2、在同一數(shù)軸表示不等式的解集.
五、列一元一次不等式組解實(shí)際問題的一般步驟:(1) 審題;(2)設(shè)未知數(shù),找(不等量)關(guān)系式;(3)設(shè)元,(根據(jù)不等量)關(guān)系式列不等式(組)(4)解不等式組;檢驗(yàn)并作答.
六、??碱}型: 1、 求4x-6 7x-12的非負(fù)數(shù)解.
2、已知3(x-a)=x-a+1r的解適合2(x-5) 8a,求a 的范圍.
3、當(dāng)m取何值時(shí),3x+m-2(m+2)=3m+x的解在-5和5之間.
八年級(jí)數(shù)學(xué)下冊復(fù)習(xí)提綱第二章 分解因式
一、公式:1、 ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a22ab+b2=(ab)2
二、把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.
1、把幾個(gè)整式的積化成一個(gè)多項(xiàng)式的形式,是乘法運(yùn)算.
2、把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,是因式分解.
3、ma+mb+mc m(a+b+c)
4、因式分解與整式乘法是相反方向的變形.
三、把多項(xiàng)式的各項(xiàng)都含有的相同因式,叫做這個(gè)多項(xiàng)式的各項(xiàng)的公因式.提公因式法分解因式就是把一個(gè)多項(xiàng)式化成單項(xiàng)式與多項(xiàng)式相乘的形式. 找公因式的一般步驟:(1)若各項(xiàng)系數(shù)是整系數(shù),取系數(shù)的最大公約數(shù);(2)取相同的字母,字母的指數(shù)取較低的;(3)取相同的多項(xiàng)式,多項(xiàng)式的指數(shù)取較低的.(4)所有這些因式的乘積即為公因式.
四、分解因式的一般步驟為:(1)若有-先提取-,若多項(xiàng)式各項(xiàng)有公因式,則再提取公因式.(2)若多項(xiàng)式各項(xiàng)沒有公因式,則根據(jù)多項(xiàng)式特點(diǎn),選用平方差公式或完全平方公式.(3)每一個(gè)多項(xiàng)式都要分解到不能再分解為止.
五、形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式. 分解因式的方法:1、提公因式法.2、運(yùn)用公式法.
八年級(jí)數(shù)學(xué)下冊復(fù)習(xí)提綱第三章 分式
注:1.對于任意一個(gè)分式,分母都不能為零.
2.分式與整式不同的是:分式的分母中含有字母,整式的分母中不含字母.
3.分式的值為零含兩層意思:分母不等于零;分子等于零.( 中B0時(shí),分式有意義;分式 中,當(dāng)B=0分式無意義;當(dāng)A=0且B0時(shí),分式的值為零.)
??贾R(shí)點(diǎn):1、分式的意義,分式的化簡.2、分式的加減乘除運(yùn)算.3、分式方程的解法及其利用分式方程解應(yīng)用題.
八年級(jí)數(shù)學(xué)下冊復(fù)習(xí)提綱第四章 相似圖形
一、 定義 表示兩個(gè)比相等的式子叫比例.
如果a與b的比值和c與d的比值相等,那么 或a∶b=c∶d,這時(shí)組成比例的四個(gè)數(shù)a,b,c,d叫做比例的項(xiàng),兩端的兩項(xiàng)叫做外項(xiàng),中間的兩項(xiàng)叫做內(nèi)項(xiàng)。即a、d為外項(xiàng),c、b為內(nèi)項(xiàng)。
四條線段a,b,c,d中,如果a與b的比等于c與d的比,即 ,那么這四條線段a,b,c,d叫做成比例線段,簡稱比例線段. 黃金分割的定義:在線段AB上,點(diǎn)C把線段AB分成兩條線段AC和BC,如果 ,那么稱線段AB被點(diǎn)C黃金分割(golden section),點(diǎn)C叫做線段AB的黃金分割點(diǎn),AC與AB的比叫做黃金比.其中 0.618. 引理:平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例.
相似多邊形: 對應(yīng)角相等,對應(yīng)邊成比例的兩個(gè)多邊形叫做相似多邊形. 相似多邊形:各角對應(yīng)相等、各邊對應(yīng)成比例的兩個(gè)多邊形叫做相似多邊形.
相似比:相似多邊形對應(yīng)邊的比叫做相似比.
二、比例的基本性質(zhì):若ad=bc(a,b,c,d都不等于0),那么 .如果(b,d都不為0),那么ad=bc.
三、求兩條線段的比時(shí)要注意的問題:(1)兩條線段的長度必須用同一長度單位表示,如果單位長度不同,應(yīng)先化成同一單位,再求它們的比;(2)兩條線段的比,沒有長度單位,它與所采用的長度單位無關(guān);(3)兩條線段的長度都是正數(shù),所以兩條線段的比值總是正數(shù).
四、相似三角形(多邊形)的性質(zhì):相似三角形對應(yīng)角相等,對應(yīng)邊成比例,相似三角形對應(yīng)高的比、對應(yīng)角平分線的比和對應(yīng)中線的比都等于相似比.相似多邊形的周長比等于相似比,面積比等于相似比的平方.
五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL
六、相似三角形的判定方法,判斷方法有:
1.三邊對應(yīng)成比例的兩個(gè)三角形相似;
2.兩角對應(yīng)相等的兩個(gè)三角形相似;
3.兩邊對應(yīng)成比例且夾角相等;
4.定義法: 對應(yīng)角相等,對應(yīng)邊成比例的兩個(gè)三角形相似.
5、定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似. 在特殊的三角形中,有的相似,有的不相似.(1)兩個(gè)全等三角形一定相似.(2)兩個(gè)等腰直角三角形一定相似.(3)兩個(gè)等邊三角形一定相似.(4)兩個(gè)直角三角形和兩個(gè)等腰三角形不一定相似.
七、位似圖形上任意一對對應(yīng)點(diǎn)到位似中心的距離之比等于位似比. 如果兩個(gè)圖形不僅是相似圖形,而且每組對應(yīng)點(diǎn)所在的直線都經(jīng)過同一個(gè)點(diǎn),那么這樣的兩個(gè)圖形叫做位似圖形,這個(gè)點(diǎn)叫位似中心,這時(shí)的相似比又稱為位似比.
??贾R(shí)點(diǎn):1、比例的基本性質(zhì),黃金分割比,位似圖形的性質(zhì).2、相似三角形的性質(zhì)及判定.相似多邊形的性質(zhì).
八年級(jí)數(shù)學(xué)下冊復(fù)習(xí)提綱第五章 數(shù)據(jù)的收集與處理
1.普查的定義:這種為了一定目的而對考察對象進(jìn)行的全面調(diào)查,稱為普查.
2.總體:其中所要考察對象的全體稱為總體.
3.個(gè)體:組成總體的每個(gè)考察對象稱為個(gè)體
4.抽樣調(diào)查:(sampling investigation):從總體中抽取部分個(gè)體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查.
5.樣本(sample):其中從總體中抽取的一部分個(gè)體叫做總體的一個(gè)樣本.
6. 當(dāng)總體中的個(gè)體數(shù)目較多時(shí),為了節(jié)省時(shí)間、人力、物力,可采用抽樣調(diào)查.為了獲得較為準(zhǔn)確的調(diào)查結(jié)果,抽樣時(shí)要注意樣本的代表性和廣泛性.還要注意關(guān)注樣本的大小.
7.我們稱每個(gè)對象出現(xiàn)的次數(shù)為頻數(shù).而每個(gè)對象出現(xiàn)的次數(shù)與總次數(shù)的比值為頻率.
8.數(shù)據(jù)波動(dòng)的統(tǒng)計(jì)量:極差:指一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差.方差:是各個(gè)數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù).標(biāo)準(zhǔn)差:方差的算術(shù)平方根.識(shí)記其計(jì)算公式.一組數(shù)據(jù)的極差,方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定.還要知平均數(shù),眾數(shù),中位數(shù)的定義.
9.刻畫平均水平用:平均數(shù),眾數(shù),中位數(shù). 刻畫離散程度用:極差,方差,標(biāo)準(zhǔn)差.
常考知識(shí)點(diǎn):1、作頻數(shù)分布表,作頻數(shù)分布直方圖.2、利用方差比較數(shù)據(jù)的穩(wěn)定性.3、平均數(shù),中位數(shù),眾數(shù),極差,方差,標(biāo)準(zhǔn)差的求法.3、頻率,樣本的定義
八年級(jí)數(shù)學(xué)下冊復(fù)習(xí)提綱第六章 證明
一、對事情作出判斷的句子,就叫做命題. 即:命題是判斷一件事情的句子.一般情況下:疑問句不是命題.圖形的作法不是命題.
每個(gè)命題都有條件(condition)和結(jié)論(conclusion)兩部分組成. 條件是已知的事項(xiàng),結(jié)論是由已知事項(xiàng)推斷出的事項(xiàng). 一般地,命題都可以寫成如果,那么的形式.其中如果引出的部分是條件,那么引出的部分是結(jié)論. 要說明一個(gè)命題是一個(gè)假命題,通??梢耘e出一個(gè)例子,使它具備命題的條件,而不具有命題的結(jié)論.這種例子稱為反例.
二、三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180度.
1、證明三角形內(nèi)角和定理的思路是將原三角形中的三個(gè)角湊到一起組成一個(gè)平角.一般需要作輔助線.既可以作平行線,也可以作一個(gè)角等于三角形中的一個(gè)角.
2、三角形的外角與它相鄰的內(nèi)角是互為補(bǔ)角.
三、三角形的外角與它不相鄰的內(nèi)角關(guān)系是:(1)三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和.(2)三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角.
四、證明一個(gè)命題是真命題的基本步驟是:
(1)根據(jù)題意,畫出圖形.
(2)根據(jù)條件、結(jié)論,結(jié)合圖形,寫出已知、求證.
(3)經(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程.
在證明時(shí)需注意:(1)在一般情況下,分析的過程不要求寫出來.(2)證明中的每一步推理都要有根據(jù). 如果兩條直線都和第三條直線平行,那么這兩條直線也相互平行.30.所對的直角邊是斜邊的一半.斜邊上的高是斜邊的一半.