高等數(shù)學(xué)教學(xué)心得3篇
在數(shù)學(xué)教學(xué)實踐中,數(shù)學(xué)教師應(yīng)把對學(xué)生學(xué)習(xí)能力的培養(yǎng)、開發(fā)學(xué)生智力以及使教學(xué)更好地適應(yīng)學(xué)生的心理發(fā)展作為重要的教學(xué)內(nèi)容。下面是學(xué)習(xí)啦帶來的高等數(shù)學(xué)教學(xué)心得體會,歡迎欣賞閱讀。
高等數(shù)學(xué)教學(xué)心得一:
高等數(shù)學(xué)是我院財務(wù)管理、工程管理、國際貿(mào)易、商管等相關(guān)專業(yè)的基礎(chǔ)課,主要講述了一元函數(shù)與多元函數(shù)的微積分學(xué),針對不同專業(yè)的實際情況,結(jié)合“雙考大綱”,高等數(shù)學(xué)又分為《高等數(shù)學(xué)A》、《高等數(shù)學(xué)B》、《高等數(shù)學(xué)C》,充分掌握高等數(shù)學(xué)的基本知識,對今后專業(yè)課的學(xué)習(xí),繼續(xù)深造,從事金融行業(yè)、建筑行業(yè)以及個人的邏輯思維等方面有很多大幫助。但是這門課程具有高度的抽象性、嚴密的邏輯性和廣泛的應(yīng)用性,知識一環(huán)扣一環(huán),結(jié)構(gòu)既有嚴密的內(nèi)在聯(lián)系同時又呈曲線跳躍式發(fā)展,對于各高校的學(xué)生來說,都是一門難學(xué)的課程。因此,在教學(xué)過程當(dāng)中,盡可能的采取靈活多樣的教學(xué)方法,讓學(xué)生充分的理解、掌握所學(xué)知識。作為一名新入職的教師,一方面很是感激校方對于我的信任,另一方面也深知作為年輕老師教學(xué)經(jīng)驗還有待進一步提高,但是我在西北大學(xué)現(xiàn)代學(xué)院這僅僅半年時間就讓我受益匪淺,在這里談一下自己的感受:
首先要認真?zhèn)湔n,仔細撰寫教案,上課時要說課,這節(jié)課大家需要掌握什么(教學(xué)大綱的要求,考試要考的知識),重點、難點是什么,使學(xué)生清楚這節(jié)課堂目的,做到有的放矢,同時還要時而去走進其他老師的課堂,認真聽聽他們的講課,向有經(jīng)驗的教師學(xué)習(xí),反思自己的教學(xué)過程并不斷完善自己的教案和教學(xué)方法。對于教案的認真撰寫須不斷地向其他優(yōu)秀老師學(xué)習(xí),這樣才會不斷地完善自己的教學(xué),提高自己的能力。
其次,上課要突出重點,做到張弛有度,結(jié)合我院學(xué)生的特點,盡量用簡單通俗的語言,圖形描述講解抽象的定理,推論等,比如在講解定積分及其性質(zhì)、多元函數(shù)求導(dǎo)運算。具體到知識點的時候,重點是在分析,考察哪個知識點,要我們做什么,完成這個工作,需要幾個步驟,每個步驟的工作又是什么,跟學(xué)生講明白,體現(xiàn)層次感,每堂課對于一個知識點,至少一道題目要有完整的板書,便于學(xué)生做筆記,模仿,要及時講解作業(yè),多與學(xué)生交流,了解學(xué)生,深入到學(xué)生中去。
再次,教會學(xué)生學(xué)習(xí)的方發(fā):聽課要學(xué)會“抓大放小”,抓住主要思路,主要思想,主要的脈路,不要在小問題上糾纏,課后自己動手去解決,實在不懂再問老師、同學(xué),因為高數(shù)的技巧性很強,這樣也提高了學(xué)生學(xué)習(xí)的興趣。另外,上課的內(nèi)容要有所拓展,在難度上要照顧想考研的學(xué)生,這些跟學(xué)生說清楚。
最后,就是基本素質(zhì),所謂“學(xué)高為師,身正為范”,教師的言行舉止也在潛移默化中影響著學(xué)生。因此,我們要著裝大方得體、講課的語速要適中,提前幾分鐘到教室,上課帶教案、教材、教學(xué)手冊,尊重學(xué)生,所言所行符合高校教師職業(yè)道德。
高等數(shù)學(xué)這門課程本質(zhì)上決定了它的枯燥無味,在教學(xué)過程中,要不斷摸索,總結(jié),依靠課堂魅力去感染學(xué)生,影響學(xué)生,讓學(xué)生喜歡這門課程。
高等數(shù)學(xué)教學(xué)心得二:
高等數(shù)學(xué)是工科、經(jīng)管類等專業(yè)核心課程之一,是后續(xù)專業(yè)基礎(chǔ)課和專業(yè)課學(xué)習(xí)的重要工具,也是對學(xué)生的思維能力、思維方法及創(chuàng)新能力培養(yǎng)的重要手段,因此學(xué)好高等數(shù)學(xué)是很重要的。但隨著高等教育的大眾化,學(xué)歷教育的層次和辦學(xué)模式的多樣化,作為基礎(chǔ)課的數(shù)學(xué),教學(xué)班一般多為大班授課,加之學(xué)生基礎(chǔ)往往參差不齊,學(xué)習(xí)方法差異較大,這就給數(shù)學(xué)課的教學(xué)增加了難度。下面就這些年自己的教學(xué)實踐,談?wù)勗鯓痈愫酶叩葘W(xué)校數(shù)學(xué)課的課堂教學(xué)。
一、重視緒論課,激發(fā)學(xué)生對高等數(shù)學(xué)的學(xué)習(xí)熱情:
開篇第一課要首先簡單介紹微積分的發(fā)展歷史,從歐多克斯、阿基米德、牛頓、萊布尼茲等數(shù)學(xué)家對發(fā)現(xiàn)微積分的貢獻,談到認知世界的一般規(guī)律,即感性到理性、從定性到定量、從常量到變量,結(jié)合我國莊子的《天下篇》、劉徽的“割圓求周”到趙州橋的建造,都深刻地揭示了微積分中的“以直代曲”“不變代變”的辯證思想。同時介紹本課程的研究對象、研究內(nèi)容和研究工具,將主要內(nèi)容用一條線穿起來給學(xué)生一個整體印象。明確告訴學(xué)生微積分對自然科學(xué)的發(fā)展起了決定性的作用。?
二、通過教學(xué)使學(xué)生逐步樹立學(xué)好高等數(shù)學(xué)的信心
近幾年來我主要從事自考院高等數(shù)學(xué)的教學(xué)工作,針對學(xué)生的數(shù)學(xué)基礎(chǔ)比較薄弱,過關(guān)率不高,有很多學(xué)生一開始就對學(xué)好高等數(shù)學(xué)沒有信心等情況。我決定,必須因材施教,在課堂上應(yīng)盡可能的用通俗易懂的語言來描述數(shù)學(xué)概念,讓學(xué)生逐步明白學(xué)習(xí)高等數(shù)學(xué)不是簡單地從“高三”到“高四”,更主要是思維方式的轉(zhuǎn)變。使學(xué)生明白基礎(chǔ)不好未必就學(xué)不好高等數(shù)學(xué),只要方法得當(dāng)是可以學(xué)好高等數(shù)學(xué)的。
三、注重教學(xué)效果
加強對學(xué)生的了解與交流,建立良好的師生關(guān)系,有助于將單純的教育教學(xué)過程變成師生平等對話、合力互動、教學(xué)相長的友好合作的過程。心理學(xué)認為:滿足人們對理解、尊重和追求的需要,就能激發(fā)人的潛能,使人有一股內(nèi)在的動力,朝所期望的目標前進。因此教師要樹立以學(xué)生為主體的生本教育觀念,要尊重學(xué)生、賞識學(xué)生、鼓勵學(xué)生、相信學(xué)生,達到激發(fā)學(xué)生學(xué)習(xí)興趣的目的。另外,教師要注意調(diào)控好個人的情緒,不能隨意把自己的喜怒哀樂帶進教室。良好的教學(xué)情緒,積極的教學(xué)情感,能喚醒學(xué)生愉快的情緒體驗,使之精力充沛,興趣盎然。
好的提問方式常常能激起學(xué)生的求知欲和探索欲,引發(fā)辯論,引導(dǎo)學(xué)生全身心地投入到深層次的思維活動中,從而增強學(xué)生的學(xué)習(xí)興趣。為此,可以通過以下兩個途徑:
1、重視預(yù)習(xí)。預(yù)習(xí)是學(xué)習(xí)過程中很重要的一個環(huán)節(jié),一方面讓學(xué)生帶著問題來聽課,以提高聽課的效率。更重要的是逐步培養(yǎng)學(xué)生的自學(xué)能力。在我看來,大學(xué)教育的主要的目的之一就是培養(yǎng)學(xué)生的自學(xué)能力。教師在每次授課結(jié)束時明確提出下次授課的具體內(nèi)容和預(yù)習(xí)要求,讓學(xué)生對將要學(xué)習(xí)的內(nèi)容有問可提,才真正達到預(yù)習(xí)的目的。
2、引導(dǎo)學(xué)生分析歸納所提的問題,并學(xué)會做出恰當(dāng)?shù)脑u價。以鼓勵為主,學(xué)生提的問題越是多樣就表明他們預(yù)習(xí)效果越好,然后鼓勵他們把這些問題分類,教師因勢利導(dǎo)地再提出新的問題,并在講解過程中逐步使學(xué)生理解所提問題的價值,分析問題之間的關(guān)系,了解其中的含義。
四、重視數(shù)學(xué)概念和定理的講述
在講敘數(shù)學(xué)概念和定理時,不僅要向?qū)W生傳授這些知識,還要向他們傳授這種抽象、概括問題的思維方法,讓學(xué)生學(xué)會從具體內(nèi)容中抽象概括,找出事物的本質(zhì)。例如,在建立定積分概念時,通過對兩個具體問題一一曲邊梯形的面積和變速直線運動的路程的計算,可以看到:前者是幾何量,后者是物理量,實際意義并不相同,但它們的數(shù)學(xué)思想和計算方法是相同的。排除其具體內(nèi)容,抽出其本質(zhì)特征,即單從數(shù)量關(guān)系看,都具有一種相同結(jié)構(gòu)的特定形式,從而抽象概括出定積分的普遍性定義。
分析與綜合是數(shù)學(xué)學(xué)習(xí)中最常用的方法。分析是從未知“看”需知,“逐步靠攏到”已知的過程;而綜合則是從已知“看”可知,“逐步推到”未知的過程。兩者對立統(tǒng)一,它們相互依存、相互轉(zhuǎn)化。所以在講解一些證明或者比較復(fù)雜的問題時,兩者一定要結(jié)合著用,先用分析法來探求解題的途徑,再用綜合法加以敘述。比如在證明一些中值定理的命題時,我們常用的“構(gòu)造輔助函數(shù)法”,就是利用這種思路去找輔助函數(shù)證明結(jié)論的。?
其次要注重培養(yǎng)學(xué)生的發(fā)散性思維。發(fā)散性思維是一種不依常規(guī)、尋求變易、從多方面思索答案的思維方式。在這種思維方式的驅(qū)動下,學(xué)生思想活躍、勇于探索、善于發(fā)現(xiàn).對學(xué)生發(fā)散性思維的培養(yǎng)應(yīng)體現(xiàn)在:(1)在問題求解前要盡可能提出許多設(shè)想,多種解法,充分調(diào)動學(xué)生的積極性,啟發(fā)他們從多方面去探求原因,抓住問題的關(guān)鍵,找出其最好的解答方法。(2)在求解問題的過程中重點要放在對題目的分析過程上,把教師精講和學(xué)生的多練結(jié)合起來,選擇有代表性的范例,從多方面分析題目的解題思路和解答方法,盡量做到一題多解、一題多變、一題多問,以加深學(xué)生對所學(xué)知識的理解,激發(fā)學(xué)生的發(fā)散性思維。?
五、 要重視習(xí)題課?
習(xí)題課是高等數(shù)學(xué)教學(xué)的一個重要環(huán)節(jié),是對所學(xué)知識的復(fù)習(xí)、鞏固、運用和深化。通過上習(xí)題課可逐步培養(yǎng)學(xué)生的運算能力、抽象概括能力和綜合運用所學(xué)知識分析問題、解決問題的能力。如何才能上好習(xí)題課呢,我以為應(yīng)注重下面幾點。?
1、首先應(yīng)注重培養(yǎng)學(xué)生的邏輯思維能力。邏輯思維能力包括抽象與概括的能力、分析與綜合的能力和歸納與演繹的能力。習(xí)題課上教師通過具體的例題對高等數(shù)學(xué)中的概念、定理和法則進行梳理,使學(xué)生加深對各個知識點的聯(lián)系。
2、此外,在習(xí)題課上,對所學(xué)的基本定理、基本概念要重點強調(diào)它們的條件、應(yīng)用范圍及其相互關(guān)系,使其在學(xué)生思維中形成一個完整有機的知識體系,為培養(yǎng)學(xué)生的創(chuàng)造性思維創(chuàng)造有利條件。新舊知識要聯(lián)系著講,不僅僅要講這一單元的知識,也要注重對以前單元知識的復(fù)習(xí)。隨著時間的推移,有些知識可能會遺忘,若在講題的過程中,把以前單元的知識也捎帶著復(fù)習(xí)一下,不僅可以增加學(xué)生的記憶效果,還會加深學(xué)生對本單元知識的理解,起到溫故而知新的作用。? 總之,數(shù)學(xué)學(xué)科自身的特點決定了要學(xué)好它就必須對它產(chǎn)生興趣。為此,需要教師在教學(xué)過程的各個環(huán)節(jié)中,根據(jù)學(xué)生的具體情況和心理特點,因材施教,采用多樣化的教學(xué)方法和技巧,有計劃、有目的地培養(yǎng)和激發(fā)學(xué)生的學(xué)習(xí)興趣,最終達到較好的教學(xué)效果。
高等數(shù)學(xué)教學(xué)心得三:
1、我認為應(yīng)該講實數(shù)的完備性的六大定理及其證明,在證明這六大定理彼此等價的過程中,肯定對同學(xué)們也是數(shù)學(xué)素質(zhì)的培養(yǎng)??赡苣銈冋J為同學(xué)們接受不了,所以應(yīng)該放棄。我不認為交大的學(xué)生會這么差,你們的第18題都有人做得出來,充分說明他們潛質(zhì)無限,你們還有什么好擔(dān)心的?而且,沒有這六大定理,你怎么證明連續(xù)函數(shù)的性質(zhì)?別告訴我連續(xù)函數(shù)的性質(zhì)不重要,因為這是常識,是最基礎(chǔ)的東西。當(dāng)然,的確有人無論如何也學(xué)不會,但數(shù)學(xué)本身就不是任何人都可以玩的游戲,就像籃球一樣,不是每個人都有姚明的天賦。
2、函數(shù)項級數(shù)的絕對收斂有一個重要的結(jié)論,就是可以任意交換項的順序而不改變收斂性和收斂值。這個結(jié)論的證明并不復(fù)雜,也沒用到經(jīng)典的極限理論。思想方法也很值得借鑒。但我不明白我們的課本里卻沒有。當(dāng)你告訴同學(xué)們一個結(jié)論的時候,你卻不能提供證據(jù),這樣,時間長了同學(xué)們帶著困惑去聽課,會越聽越糊涂,云山霧罩,最終失去了對數(shù)學(xué)的熱愛。講課者也無法向?qū)W生展示數(shù)學(xué)的美。
2、上極限的概念我認為也應(yīng)該講,但沒必要像數(shù)學(xué)專業(yè)講得這么深奧。我對高數(shù)的學(xué)生講這個概念只是一句話:上極限就是最大的子極限。再舉一些例子就完了。不然的話,當(dāng)極限不存在的時候,你如何求冪級數(shù)的收斂半徑?
3、一致收斂的概念也應(yīng)該講,因為逐項求導(dǎo)、逐項積分也是工科學(xué)生常常使用的東西,沒有一致收斂,你怎么可以堂而皇之地逐項求導(dǎo)、逐項積分?很多冪級數(shù)你不逐項求導(dǎo)、逐項積分你根本就求不出來。當(dāng)然我講這個概念也講得很辛苦,講完一致收斂及其他的性質(zhì),以及舉出各種反例整整用了兩個星期的時間(八學(xué)時),但是,一旦有了這個概念,學(xué)到冪級數(shù)的時候就感到非常輕松,一切都顯得自然而然。因為冪級數(shù)的特殊性,你很容易就可以證明其是否一致收斂,再加上利用上極限的概念你很容易就可以證明逐項求導(dǎo)、逐項積分之后的冪級數(shù)收斂半徑不變,很簡單你就可以逐項積分、逐項求導(dǎo)。我真不知道沒有一致收斂和上極限的概念,你怎么用很簡潔的方法證明這個結(jié)論?而沒有這個結(jié)論,你又如何保障逐項積分、逐項求導(dǎo)之后依舊收斂并且收斂到原來的函數(shù)的積分或者導(dǎo)數(shù)?而如果不加證明地丟給同學(xué)們很多不明就里的結(jié)論,要求他們強行記憶,然后拼命地做各種題目訓(xùn)練出做題的技能,這真的就是我們培養(yǎng)人才的目的嗎?數(shù)學(xué)素質(zhì)的教育和深度思考的習(xí)慣對其他專業(yè)理工科的學(xué)生真的就不重要嗎?
至于時間不夠的問題我認為根本就不存在。我的處理方式就是,仔細講述涉及到的數(shù)學(xué)的概念和定理證明,至于計算題我就只講一講方法,他們回去做作業(yè)完全可以看著例題照著葫蘆畫瓢。
我們原來使用的微積分課本題目難度很大,可以說達到了一定的境界,但理論部分實在是難以恭維。這樣的培養(yǎng)目標究竟是什么我真的不好講,似乎是準備參加數(shù)學(xué)競賽。但對數(shù)學(xué)素質(zhì)的培養(yǎng)并沒什么太大幫助,也沒有培養(yǎng)出同學(xué)們學(xué)會思考問題的習(xí)慣,自學(xué)能力也得不到提升,對后續(xù)課程的學(xué)習(xí)也很不利。因為不知道為什么,學(xué)了也很容易忘掉。
總之,我建議大規(guī)模修改課本,增加系統(tǒng)的理論。非數(shù)學(xué)系的教學(xué)擺在我們面前的就是如何通俗地講解數(shù)學(xué)理論,而不是放棄數(shù)學(xué)理論。原來這個課本千萬不要再用了,簡直就是誤人子弟。
高等數(shù)學(xué)教學(xué)心得3篇相關(guān)文章:
7.華羅庚的讀書心得
10.1000字的讀書心得