有關(guān)數(shù)學(xué)建模論文
有關(guān)數(shù)學(xué)建模論文
在我國(guó)倡導(dǎo)素質(zhì)教育的今天,數(shù)學(xué)建模受到的關(guān)注與日俱增。數(shù)學(xué)建模已成為國(guó)際、國(guó)內(nèi)數(shù)學(xué)教育中穩(wěn)定的內(nèi)容和熱點(diǎn)之一。下面是學(xué)習(xí)啦小編為大家整理的有關(guān)數(shù)學(xué)建模論文,供大家參考。
有關(guān)數(shù)學(xué)建模論文范文一:數(shù)學(xué)建模心理學(xué)思想研究
摘要:數(shù)學(xué)建模即為解決現(xiàn)實(shí)生活中的實(shí)際問(wèn)題而建立的數(shù)學(xué)模型,它是數(shù)學(xué)與現(xiàn)實(shí)世界的紐帶。結(jié)合教學(xué)案例,利用認(rèn)知心理學(xué)知識(shí),提出促進(jìn)學(xué)生建立良好數(shù)學(xué)認(rèn)知結(jié)構(gòu)以及數(shù)學(xué)學(xué)習(xí)觀的原則和方法,幫助學(xué)生由知識(shí)型向能力型轉(zhuǎn)變,推進(jìn)素質(zhì)教育發(fā)展。
關(guān)鍵詞:認(rèn)知心理學(xué);思想;數(shù)學(xué)建模;認(rèn)知結(jié)構(gòu);學(xué)習(xí)觀
認(rèn)知心理學(xué)(CognitivePsychology)興起于20世紀(jì)60年代,是以信息加工理論為核心,研究人的心智活動(dòng)為機(jī)制的心理學(xué),又被稱為信息加工心理學(xué)。它是認(rèn)知科學(xué)和心理學(xué)的一個(gè)重要分支,它對(duì)一切認(rèn)知或認(rèn)知過(guò)程進(jìn)行研究,包括感知覺(jué)、注意、記憶、思維和言語(yǔ)等[1]。當(dāng)代認(rèn)知心理學(xué)主要用來(lái)探究新知識(shí)的識(shí)記、保持、再認(rèn)或再現(xiàn)的信息加工過(guò)程中關(guān)于學(xué)習(xí)的認(rèn)識(shí)觀。而這一認(rèn)識(shí)觀在學(xué)習(xí)中體現(xiàn)較突出的即為數(shù)學(xué)建模,它是通過(guò)信息加工理論對(duì)現(xiàn)實(shí)問(wèn)題運(yùn)用數(shù)學(xué)思想加以簡(jiǎn)化和假設(shè)而得到的數(shù)學(xué)結(jié)構(gòu)。本文通過(guò)構(gòu)建數(shù)學(xué)模型將“認(rèn)知心理學(xué)”的思想融入現(xiàn)實(shí)問(wèn)題的處理,結(jié)合教學(xué)案例,并提出建立良好數(shù)學(xué)認(rèn)知結(jié)構(gòu)以及數(shù)學(xué)學(xué)習(xí)觀的原則和方法,進(jìn)一步證實(shí)認(rèn)知心理學(xué)思想在數(shù)學(xué)建模中的重要性。
一、案例分析
2011年微軟公司在招聘畢業(yè)大學(xué)生時(shí),給面試人員出了這樣一道題:假如有800個(gè)形狀、大小相同的球,其中有一個(gè)球比其他球重,給你一個(gè)天平,請(qǐng)問(wèn)你可以至少用幾次就可以保證找出這個(gè)較重的球?面試者中不乏名牌大學(xué)的本科、碩士甚至博士,可竟無(wú)一人能在有限的時(shí)間內(nèi)回答上來(lái)。其實(shí),后來(lái)他們知道這只是一道小學(xué)六年級(jí)“找次品”題目的變形。
(一)問(wèn)題轉(zhuǎn)化,認(rèn)知策略
我們知道,要從800個(gè)球中找到較重的一個(gè)球這一問(wèn)題如果直接運(yùn)用推理思想應(yīng)該會(huì)很困難,如果我們運(yùn)用“使復(fù)雜問(wèn)題簡(jiǎn)單化”這一認(rèn)知策略,問(wèn)題就會(huì)變得具體可行。于是,提出如下分解問(wèn)題。問(wèn)題1.對(duì)3個(gè)球進(jìn)行實(shí)驗(yàn)操作[2]。問(wèn)題2.對(duì)5個(gè)球進(jìn)行實(shí)驗(yàn)操作。問(wèn)題3.對(duì)9個(gè)球進(jìn)行實(shí)驗(yàn)操作。問(wèn)題4.對(duì)4、6、7、8個(gè)球進(jìn)行實(shí)驗(yàn)操作。問(wèn)題5.如何得到最佳分配方法。
(二)模型分析,優(yōu)化策略
通過(guò)問(wèn)題1和問(wèn)題2,我們知道從3個(gè)球和5個(gè)球中找次品,最少并且保證找到次品的分配方法是將球分成3份。但這一結(jié)論只是我們對(duì)實(shí)驗(yàn)操作的感知策略。為了尋找策略,我們?cè)O(shè)計(jì)了問(wèn)題3,對(duì)于9個(gè)球的最佳分配方法也是分為3份。因此我們得到結(jié)論:在“找次品”過(guò)程中,結(jié)合天平每次只能比較2份這一特點(diǎn),重球只可能在天平一端或者第3份中,同時(shí),為了保證最少找到,9個(gè)球均分3份是最好的方法。能被3除盡的球我們得到均分這一優(yōu)化策略,對(duì)于不能均分的球怎么分配?于是我們?cè)O(shè)計(jì)了問(wèn)題4,通過(guò)問(wèn)題4我們得到結(jié)論:找次品時(shí),盡量均分為3份,若不能均分要求每份盡量一樣,可以多1個(gè)或少1個(gè)。通過(guò)問(wèn)題解決,我們建立新的認(rèn)知結(jié)構(gòu):2~3個(gè)球,1次;3+1~32個(gè)球,2次;32+1~33個(gè)球,3次;……
(三)模型轉(zhuǎn)化,歸納策略
通過(guò)將新的認(rèn)知結(jié)構(gòu)運(yùn)用到生活實(shí)踐,我們知道800在36~37之間,所以我們得到800個(gè)球若要保證最少分配次數(shù)是7次。在認(rèn)知心理學(xué)中,信息的具體表征和加工過(guò)程即為編碼。編碼并不被人們所覺(jué)察,它往往以“刺激”的形式表現(xiàn)為知覺(jué)以及思想。在信息加工過(guò)程中,固有的知識(shí)經(jīng)驗(yàn)、嚴(yán)密的邏輯思維能力以及抽象概況能力將為數(shù)學(xué)建模中能力的提高產(chǎn)生重要的意義。
二、數(shù)學(xué)建模中認(rèn)知心理學(xué)思想融入
知識(shí)結(jié)構(gòu)和認(rèn)知結(jié)構(gòu)是認(rèn)知心理學(xué)的兩個(gè)基本概念[3]。數(shù)學(xué)是人類在認(rèn)識(shí)社會(huì)實(shí)踐中積累的經(jīng)驗(yàn)成果,它起源于現(xiàn)實(shí)生活,以數(shù)字化的形式呈現(xiàn)并用來(lái)解決現(xiàn)實(shí)問(wèn)題。它要求人們具有嚴(yán)密的邏輯思維以及空間思維能力,并通過(guò)感知、記憶、理解數(shù)形關(guān)系的過(guò)程中形成一種認(rèn)知模型或者思維模式。這種認(rèn)知模型通常以“圖式”的形式存在于客體的頭腦,并且可以根據(jù)需要隨時(shí)提取支配。
(一)我國(guó)數(shù)學(xué)建模的現(xiàn)狀
《課程標(biāo)準(zhǔn)(2011年版)》將模型思想這一核心概念的引入成為數(shù)學(xué)學(xué)習(xí)的主要方向。其實(shí),數(shù)學(xué)建模方面的文章最早出自1982年張景中教授論文“洗衣服的數(shù)學(xué)”以及“壘磚問(wèn)題”。雖然數(shù)學(xué)建模思想遍布國(guó)內(nèi)外,但是真正將數(shù)學(xué)建模融入教學(xué),從生活事件中抽取數(shù)學(xué)素材卻很難。數(shù)學(xué)建模思想注重知識(shí)應(yīng)用,通過(guò)提取已有“圖式”→加工信息→形成新的認(rèn)知結(jié)構(gòu)的方式內(nèi)化形成客體自身的“事物結(jié)構(gòu)”,其不僅具有解釋、判斷、預(yù)見(jiàn)功能,而且能夠提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和應(yīng)用意識(shí)[4]。
(二)結(jié)合認(rèn)知心理學(xué)思想,如何形成有效的數(shù)學(xué)認(rèn)知結(jié)構(gòu)
知識(shí)結(jié)構(gòu)與智力活動(dòng)相結(jié)合,形成有效認(rèn)知結(jié)構(gòu)。我們知道,數(shù)學(xué)的知識(shí)結(jié)構(gòu)是前人在總結(jié)的基礎(chǔ)上,通過(guò)教學(xué)大綱、教材的形式呈現(xiàn),并通過(guò)語(yǔ)言、數(shù)字、符號(hào)等形式詳細(xì)記述的。學(xué)生在學(xué)習(xí)時(shí),通過(guò)將教材中的知識(shí)簡(jiǎn)約化為特定的語(yǔ)言文字符號(hào)的過(guò)程叫作客體的認(rèn)知結(jié)構(gòu),這一過(guò)程中,智力活動(dòng)起了重要作用。復(fù)雜的知識(shí)結(jié)構(gòu)體系、內(nèi)心體驗(yàn)以及有限的信息加工容量讓我們不得不針對(duì)內(nèi)外部的有效信息進(jìn)行篩選。這一過(guò)程中,“注意”起到重要作用,我們?cè)谶M(jìn)行信息加工時(shí),只有將知識(shí)結(jié)構(gòu)與智力活動(dòng)相結(jié)合,增加“有意注意”和“有意后注意”,才能夠形成有效的數(shù)學(xué)認(rèn)知結(jié)構(gòu)。根據(jù)不同構(gòu)造方式,形成有利認(rèn)知結(jié)構(gòu)。數(shù)學(xué)的知識(shí)結(jié)構(gòu)遵循循序漸進(jìn)規(guī)律,并具有嚴(yán)密的邏輯性和準(zhǔn)確性,它是形成不同認(rèn)知結(jié)構(gòu)的基礎(chǔ)。學(xué)生頭腦中的認(rèn)知結(jié)構(gòu)則是通過(guò)積累和加工而來(lái),即使數(shù)學(xué)的知識(shí)結(jié)構(gòu)一樣,不同的人仍然會(huì)形成不同的認(rèn)知結(jié)構(gòu)。這一特點(diǎn)取決于客體的智力水平、學(xué)習(xí)能力。因此若要形成有利認(rèn)知結(jié)構(gòu),必須遵循知識(shí)發(fā)展一般規(guī)律,注重知識(shí)的連貫性和順序性,考慮知識(shí)的積累,注重邏輯思維能力的提高。
三、認(rèn)知心理學(xué)思想下的數(shù)學(xué)學(xué)習(xí)觀
學(xué)習(xí)是學(xué)習(xí)者已知的、所碰到的信息和他們?cè)趯W(xué)習(xí)時(shí)所做的之間相互作用的結(jié)果[5]。如何將數(shù)學(xué)知識(shí)變?yōu)閭€(gè)體的知識(shí),從認(rèn)知心理學(xué)角度分析,即如何將數(shù)學(xué)的認(rèn)知結(jié)構(gòu)吸收為個(gè)體的認(rèn)知結(jié)構(gòu),即建立良好的數(shù)學(xué)學(xué)習(xí)觀,這一課題成為許多研究者關(guān)注的對(duì)象。那么怎樣學(xué)習(xí)才能夠提高解決數(shù)學(xué)問(wèn)題的能力?或者怎樣才能構(gòu)建有效的數(shù)學(xué)模型,接下來(lái)我們將根據(jù)認(rèn)知心理學(xué)知識(shí),提出數(shù)學(xué)學(xué)習(xí)觀的構(gòu)建原則和方法。
(一)良好數(shù)學(xué)學(xué)習(xí)觀應(yīng)該是“雙向產(chǎn)生式”的信息
加工過(guò)程學(xué)習(xí)是新舊知識(shí)相互作用的結(jié)果,是人們?cè)谛畔⒓庸み^(guò)程中,通過(guò)提取已有“圖式”將新輸入的信息與頭腦中已存儲(chǔ)的信息進(jìn)行有效聯(lián)系而形成新的認(rèn)知結(jié)構(gòu)的過(guò)程[6]??墒牵?dāng)客體對(duì)于已有“圖式”不知如何使用,或者當(dāng)遇到可以利用“圖式”去解決的問(wèn)題時(shí)不知道去提取相應(yīng)的知識(shí),學(xué)習(xí)過(guò)程便變得僵化、不知變通。譬如,案例中,即使大部分學(xué)生都學(xué)習(xí)了“找次品”這部分內(nèi)容,卻只能用來(lái)解決比較明確的教材性問(wèn)題,對(duì)于實(shí)際生活問(wèn)題卻很難解決。學(xué)習(xí)應(yīng)該是“雙向產(chǎn)生式”的信息加工過(guò)程,數(shù)學(xué)的靈活性在這方面得到了較好的體現(xiàn)。學(xué)習(xí)時(shí)應(yīng)遵循有效記憶策略,將所學(xué)知識(shí)與該知識(shí)有聯(lián)系的其他知識(shí)結(jié)合記憶,形成“流動(dòng)”的知識(shí)結(jié)構(gòu)。例如在案例中,求800個(gè)球中較重球的最少次數(shù),可以先從簡(jiǎn)單問(wèn)題出發(fā),對(duì)3個(gè)球和5個(gè)球進(jìn)行分析,猜測(cè)并驗(yàn)證出一般分配方法。這一過(guò)程需要有效提取已有知識(shí)經(jīng)驗(yàn),通過(guò)擬合構(gòu)造,不僅可以提高學(xué)生學(xué)習(xí)興趣,而且能夠增強(qiáng)知識(shí)認(rèn)識(shí)水平和思維能力。
(二)良好數(shù)學(xué)學(xué)習(xí)觀應(yīng)該具有層次化、條理化的認(rèn)知結(jié)構(gòu)
如果頭腦中僅有“雙向產(chǎn)生式”的認(rèn)知結(jié)構(gòu),當(dāng)遇到問(wèn)題時(shí),很難快速找到解決問(wèn)題的有效條件。頭腦中數(shù)以萬(wàn)計(jì)“知識(shí)組塊”必須形成一個(gè)系統(tǒng),一個(gè)可以大大提高檢索、提取效率的層次結(jié)構(gòu)網(wǎng)絡(luò)。如案例,在尋找最佳分配方案時(shí),我們可以把8個(gè)球中找次品的所有分配情況都羅列出來(lái)。這樣做,打破了“定勢(shì)”的限制,而以最少稱量次數(shù)為線索來(lái)重新構(gòu)造知識(shí),有助于提高學(xué)生發(fā)散思維水平,使知識(shí)結(jié)構(gòu)更加具有層次化、條理化。在學(xué)習(xí)過(guò)程中,隨著頭腦中信息量的增多,層次結(jié)構(gòu)網(wǎng)絡(luò)也會(huì)越來(lái)越復(fù)雜。因此,必須加強(qiáng)記憶的有效保持,鞏固抽象知識(shí)與具體知識(shí)之間的聯(lián)系,能夠使思維在抽象和現(xiàn)實(shí)之間靈活轉(zhuǎn)化。而這一過(guò)程的優(yōu)化策略是有效練習(xí)。
(三)良好數(shù)學(xué)學(xué)習(xí)觀應(yīng)該具有有效的思維策略
要想形成有效的數(shù)學(xué)學(xué)習(xí)觀,提高解決實(shí)際問(wèn)題的能力,頭腦中還必須要形成有層次的思維策略,以便大腦在學(xué)習(xí)和信息加工過(guò)程中,策略性思維能夠有效加以引導(dǎo)和把控。通過(guò)調(diào)節(jié)高層策略知識(shí)與底層描述性及程序性知識(shí)之間的轉(zhuǎn)換,不斷反思頭腦思維策略是否恰當(dāng)進(jìn)而做出調(diào)整和優(yōu)化。譬如,在案例中,思維經(jīng)過(guò)轉(zhuǎn)化策略、尋找策略、優(yōu)化策略、歸納總結(jié)四個(gè)過(guò)程,由一般→特殊→一般問(wèn)題的求解也是思維由高層向底層再向高層轉(zhuǎn)換的層次性的體現(xiàn)。
在思維策略訓(xùn)練時(shí),我們應(yīng)重視與學(xué)科知識(shí)之間的聯(lián)系度。底層思維策略主要以學(xué)科知識(shí)的形式存在于頭腦,它的遷移性較強(qiáng),能夠與各種同學(xué)科問(wèn)題緊密結(jié)合。因此可以通過(guò)訓(xùn)練學(xué)生如何審題,如何利用已有條件和問(wèn)題明確思維方向,提取并調(diào)用相關(guān)知識(shí)來(lái)解決現(xiàn)實(shí)問(wèn)題。
另外,有效思維訓(xùn)練還必須做到“熟練”,對(duì)于課堂需要識(shí)記的東西要提前預(yù)習(xí)并及時(shí)復(fù)習(xí),對(duì)于同類型題目,找出知識(shí)之間的關(guān)聯(lián)性組建知識(shí)層次結(jié)構(gòu),有效練習(xí)同類型題目,提高解難題能力,做到“熟能生巧”。
總之,認(rèn)知心理學(xué)思想融入數(shù)學(xué)建模是非常有必要和有意義的。數(shù)學(xué)建模的最終目標(biāo)是培養(yǎng)學(xué)生用數(shù)學(xué)的眼光觀察問(wèn)題,用數(shù)學(xué)的思維思考問(wèn)題,用數(shù)學(xué)的方法解決問(wèn)題的能力[4]。數(shù)學(xué)建模的過(guò)程即為已有信息經(jīng)過(guò)智力加工→編碼而形成心理產(chǎn)物,這一過(guò)程需要運(yùn)用到數(shù)學(xué)知識(shí)系統(tǒng)和思維操作系統(tǒng)。因此,要想提高學(xué)生數(shù)學(xué)建模能力、搭建理論與實(shí)踐的橋梁、促進(jìn)學(xué)生由知識(shí)型向能力型轉(zhuǎn)變、推進(jìn)素質(zhì)教育發(fā)展,除了教師的引導(dǎo)、學(xué)校的重視外,學(xué)生自身在認(rèn)知結(jié)構(gòu)、信息構(gòu)建、思維策略、訓(xùn)練方式等方面也應(yīng)提出新的思考。
參考文獻(xiàn):
[1]劉勛,吳艷紅,李興珊,蔣毅.認(rèn)知心理學(xué):理解腦、心智和行為的基石[J].學(xué)科發(fā)展,2011,26(6):620-621.
[2]陳曉虎.淺談在找次品教學(xué)中優(yōu)化數(shù)學(xué)思想方法的滲透[J].教研爭(zhēng)鳴,2014,12(1):151.
[3]管鵬.形成良好數(shù)學(xué)認(rèn)知結(jié)構(gòu)的認(rèn)知心理學(xué)原則[J].教育理論與實(shí)踐,1998,18(2):40-45.
[4]羅苗.認(rèn)知心理學(xué)在教學(xué)中的應(yīng)用———C語(yǔ)言程序設(shè)計(jì)為例[J].科技教育創(chuàng)新,2010,121(19):250.
[5]周燕.小學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)模型思想的融入[D].上海:上海師范大學(xué),2013.
[6]傅小蘭,劉超.認(rèn)知心理學(xué)研究心智問(wèn)題的途徑和方法[J].自然辯證法通訊,2003,147(5):96-97.
有關(guān)數(shù)學(xué)建模論文范文二:數(shù)學(xué)建模思想下高等數(shù)學(xué)論文
1高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模思想應(yīng)用的優(yōu)勢(shì)
1.1有助于調(diào)動(dòng)學(xué)生學(xué)習(xí)的興趣
在高等數(shù)學(xué)教學(xué)中,如果缺乏正確的認(rèn)識(shí)與定位,就會(huì)致使學(xué)生學(xué)習(xí)動(dòng)機(jī)不明確,學(xué)習(xí)積極性較低,在實(shí)際解題中,無(wú)法有效拓展思路,缺乏自主解決問(wèn)題的能力。在高等數(shù)學(xué)教學(xué)中應(yīng)用數(shù)學(xué)建模思想,可以讓學(xué)生對(duì)高等數(shù)學(xué)進(jìn)行重新的認(rèn)識(shí)與定位,準(zhǔn)確掌握有關(guān)概念、定理知識(shí),并且將其應(yīng)用在實(shí)際工作當(dāng)中。與純理論教學(xué)相較而言,在高等數(shù)學(xué)教學(xué)中應(yīng)用數(shù)學(xué)建模思想,可以更好的調(diào)動(dòng)學(xué)生學(xué)習(xí)的興趣與積極性,讓學(xué)生可以自主學(xué)習(xí)相關(guān)知識(shí),進(jìn)而提高課堂教學(xué)質(zhì)量。2.2有助于提高學(xué)生的數(shù)學(xué)素質(zhì)隨著科學(xué)技術(shù)水平的不斷提高,社會(huì)對(duì)人才的要求越來(lái)越高,大學(xué)生不僅要了解專業(yè)知識(shí),還要具有分析、解決問(wèn)題的能力,同時(shí)還要具備一定的組織管理能力、實(shí)際操作能力等,這樣才可以更好的滿足工作需求。高等數(shù)學(xué)具有嚴(yán)密的邏輯性、較強(qiáng)的抽象性,符合時(shí)代發(fā)展的需求,滿足了社會(huì)發(fā)展對(duì)新型人才的需求。在高等數(shù)學(xué)教學(xué)中應(yīng)用數(shù)學(xué)建模思想,不僅可以提高學(xué)生的數(shù)學(xué)素質(zhì),還可以增強(qiáng)學(xué)生的綜合素質(zhì)。同時(shí),在高等數(shù)學(xué)教學(xué)中,應(yīng)用數(shù)學(xué)建模思想,可以加強(qiáng)學(xué)生理論和實(shí)踐的結(jié)合,通過(guò)數(shù)學(xué)模型的構(gòu)建,可以培養(yǎng)學(xué)生的數(shù)學(xué)運(yùn)用能力與實(shí)踐能力,進(jìn)而提高學(xué)生的綜合素質(zhì)。
1.3有助于培養(yǎng)學(xué)生的創(chuàng)新能力
和傳統(tǒng)高等數(shù)學(xué)純理論教學(xué)不同,數(shù)學(xué)建模思想在高等數(shù)學(xué)教學(xué)中應(yīng)用的時(shí)候,更加重視實(shí)際問(wèn)題的解決,通過(guò)數(shù)學(xué)模型的構(gòu)建,解決實(shí)際問(wèn)題,有助于培養(yǎng)學(xué)生的創(chuàng)新精神,在實(shí)際運(yùn)用中提高學(xué)生的創(chuàng)新能力。數(shù)學(xué)建?;顒?dòng)需要學(xué)生參與實(shí)際問(wèn)題的分析與解決,完成數(shù)學(xué)模型的求解。在實(shí)際教學(xué)中,學(xué)生具有充足的思考空間,為提高學(xué)生的創(chuàng)新意識(shí)奠定了堅(jiān)實(shí)的基礎(chǔ),同時(shí),充分發(fā)揮了學(xué)生的自身優(yōu)勢(shì),挖掘了學(xué)生學(xué)習(xí)的潛能,有效解決了實(shí)際問(wèn)題。在很大程度上提高了學(xué)生數(shù)學(xué)運(yùn)用能力,培養(yǎng)了學(xué)生的創(chuàng)新意識(shí),增強(qiáng)了學(xué)生的創(chuàng)新能力。
2高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模思想應(yīng)用的原則
在進(jìn)行數(shù)學(xué)建模的時(shí)候,一定要保證實(shí)例簡(jiǎn)明易懂,結(jié)合日常生活的實(shí)際情況,創(chuàng)設(shè)相應(yīng)的教學(xué)情境,激發(fā)學(xué)生學(xué)習(xí)的興趣。從易懂的實(shí)際問(wèn)題出發(fā),由淺到深的展開(kāi)教學(xué)內(nèi)容,通過(guò)建模思想的滲透,讓學(xué)生進(jìn)行認(rèn)真的思考,進(jìn)而掌握一些學(xué)習(xí)的方法與手段。在實(shí)際教學(xué)中,不要強(qiáng)求統(tǒng)一,針對(duì)不同的專業(yè)、院校,展開(kāi)因材施教,加強(qiáng)與教學(xué)研究的結(jié)合,不斷發(fā)現(xiàn)問(wèn)題,并且予以改進(jìn),達(dá)到預(yù)期的教學(xué)效果。教師需要編寫(xiě)一些可以融入的教學(xué)單元,為相關(guān)課程教學(xué)提供有效的數(shù)學(xué)建模素材,促進(jìn)教師與學(xué)生的學(xué)習(xí)與研究,培養(yǎng)個(gè)人的教學(xué)風(fēng)格。除此之外,在實(shí)際教學(xué)中,可以將教學(xué)重點(diǎn)放在大一的第一學(xué)期,加強(qiáng)教師引導(dǎo)與教育,根據(jù)實(shí)際問(wèn)題,重視微積分概念、思想、方法的學(xué)習(xí),結(jié)合數(shù)學(xué)建模思想,讓學(xué)生充分認(rèn)識(shí)到高等數(shù)學(xué)的重要性,進(jìn)而展開(kāi)相關(guān)學(xué)習(xí)。
3高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想的有效方法
3.1轉(zhuǎn)變教學(xué)觀念
在高等數(shù)學(xué)教學(xué)中應(yīng)用數(shù)學(xué)建模思想,需要重視教學(xué)觀念的轉(zhuǎn)變,向?qū)W生傳授數(shù)學(xué)模型思想,提高學(xué)生數(shù)學(xué)建模的意識(shí)。在有關(guān)概念、公式等理論教學(xué)中,教師不僅要對(duì)知識(shí)的來(lái)龍去脈進(jìn)行講解,還要讓學(xué)生進(jìn)行親身體會(huì),進(jìn)而在體會(huì)中不斷提高學(xué)習(xí)成績(jī)。比如,37支球隊(duì)進(jìn)行淘汰賽,每輪比賽出場(chǎng)2支球隊(duì),勝利的一方進(jìn)入下一輪,直到比賽結(jié)束。請(qǐng)問(wèn):在這一過(guò)程中,一共需要進(jìn)行多少場(chǎng)比賽?一般的解題方法就是預(yù)留1支球隊(duì),其它球隊(duì)進(jìn)行淘汰賽,那么36/2+18/2+10/2+4/2+2/2+1=36。然而在實(shí)際教學(xué)中,教師可以轉(zhuǎn)變一下教學(xué)思路,通過(guò)逆向思維的形式解答,即,每場(chǎng)比賽淘汰1支球隊(duì),那么就需要淘汰36支球隊(duì),進(jìn)而比賽場(chǎng)次為36。通過(guò)這樣的方式,讓學(xué)生在練習(xí)過(guò)程中,加深對(duì)數(shù)學(xué)建模思想的認(rèn)識(shí),提高高等數(shù)學(xué)教學(xué)的有效性。
3.2高等數(shù)學(xué)概念教學(xué)中的應(yīng)用
在高等數(shù)學(xué)概念教學(xué)中,相較于初高中數(shù)學(xué)概念,更加抽象,如導(dǎo)數(shù)、定積分等。在對(duì)這些概念展開(kāi)學(xué)習(xí)的時(shí)候,學(xué)生一般都比較重視這些概念的來(lái)源與應(yīng)用,希望可以在實(shí)際問(wèn)題中找出這些概念的原型。實(shí)際上,在高等數(shù)學(xué)微積分概念中,其形成本身就具有一定的數(shù)學(xué)建模思想。為此,在導(dǎo)入數(shù)學(xué)概念的時(shí)候,借助數(shù)學(xué)建模思想,完成教學(xué)內(nèi)容是非??尚械?。每引出—個(gè)新概念,都應(yīng)有—個(gè)刺激學(xué)生學(xué)習(xí)欲的實(shí)例,說(shuō)明該內(nèi)容的應(yīng)用性。在高等數(shù)學(xué)概念教學(xué)中,通過(guò)實(shí)際問(wèn)題情境的創(chuàng)設(shè)與導(dǎo)入,可以讓學(xué)生了解概念形成的過(guò)程,進(jìn)而運(yùn)用抽象知識(shí)解決概念形成過(guò)程,引出數(shù)學(xué)概念,構(gòu)建數(shù)學(xué)模型,加強(qiáng)對(duì)實(shí)際問(wèn)題的解決。比如,在學(xué)習(xí)定積分概念的時(shí)候,可以設(shè)計(jì)以下教學(xué)過(guò)程:首先,提出問(wèn)題。怎樣求勻變速直線運(yùn)動(dòng)路程?怎樣計(jì)算不規(guī)則圖形的面積?等等。其次,分析問(wèn)題。如果速度是不變的,那么路程=速度×時(shí)間。問(wèn)題是這里的速度不是一個(gè)常數(shù),為此,上述公式不能用。最后,解決問(wèn)題。將時(shí)間段分成很多的小區(qū)間,在時(shí)間段分割足夠小的情況下,因?yàn)樗俣茸兓癁檫B續(xù)的,可以將各小區(qū)間的速度看成是勻速的,也就是說(shuō),將小區(qū)間內(nèi)速度當(dāng)成是常數(shù),用這一小區(qū)間的時(shí)間乘以速度,就可以計(jì)算器路程,將所有小區(qū)間的路程加在一起,就是總路程,要想得到精確值,就要將時(shí)間段進(jìn)行無(wú)限的細(xì)化。使每個(gè)小區(qū)間都趨于零,這樣所有小區(qū)間路程之和就是所求路程。針對(duì)問(wèn)題二而言,也可以將其轉(zhuǎn)變成一個(gè)和式的極限。這兩個(gè)問(wèn)題都可以轉(zhuǎn)變成和式極限,拋開(kāi)實(shí)際問(wèn)題,可以將和式極限值稱之為函數(shù)在區(qū)間上的定積分,進(jìn)而得出定積分的概念。解決問(wèn)題的過(guò)程就是構(gòu)建數(shù)學(xué)模型的過(guò)程,通過(guò)教學(xué)活動(dòng),將數(shù)學(xué)知識(shí)和實(shí)際問(wèn)題進(jìn)行聯(lián)系,提高學(xué)生學(xué)習(xí)的興趣與積極性,實(shí)現(xiàn)預(yù)期的教學(xué)效果。
3.3高等數(shù)學(xué)應(yīng)用問(wèn)題教學(xué)中的應(yīng)用
對(duì)于教材中實(shí)際應(yīng)用問(wèn)題比較少的情況而言,可以在實(shí)際教學(xué)中挑選一些實(shí)際應(yīng)用案例,構(gòu)建數(shù)學(xué)模型予以示范。在應(yīng)用問(wèn)題教學(xué)中應(yīng)用數(shù)學(xué)建模思想,可以將數(shù)學(xué)知識(shí)與實(shí)際問(wèn)題進(jìn)行結(jié)合,這樣不僅可以提高數(shù)學(xué)知識(shí)的應(yīng)用性,還可以提高學(xué)生的應(yīng)用意識(shí),并且在填補(bǔ)數(shù)學(xué)理論和應(yīng)用的方面發(fā)揮了重要作用。對(duì)實(shí)際問(wèn)題予以建模,可以從應(yīng)用角度分析數(shù)學(xué)問(wèn)題,強(qiáng)化數(shù)學(xué)知識(shí)的運(yùn)用。比如,微元法作為高等數(shù)學(xué)中最為重要、最為基礎(chǔ)的思想與方法,是高等數(shù)學(xué)普遍應(yīng)用的重要手段,也是利用微積分解決實(shí)際問(wèn)題,構(gòu)建數(shù)學(xué)模型的重要保障。為此,在高等數(shù)學(xué)教學(xué)中,一定要將其貫穿教學(xué)活動(dòng)的始終。在實(shí)際教學(xué)中,教師可以根據(jù)生命科學(xué)、經(jīng)濟(jì)學(xué)、物理學(xué)等實(shí)際案例,加深學(xué)生對(duì)有關(guān)知識(shí)歷史的了解,提高學(xué)生對(duì)有關(guān)知識(shí)的理解,培養(yǎng)學(xué)生的數(shù)學(xué)建模意識(shí)。又比如,在講解導(dǎo)數(shù)應(yīng)用知識(shí)的時(shí)候,教師可以適當(dāng)引入切線斜率、瞬時(shí)速度、邊際成本等案例;在講解極值問(wèn)題的時(shí)候,可以適當(dāng)引入征稅、造價(jià)最低等案例。這樣不僅可以激發(fā)學(xué)生學(xué)習(xí)的興趣與積極性,還可以創(chuàng)設(shè)良好的教學(xué)氛圍,對(duì)提高課堂教學(xué)效果有著十分重要的意義。
4高等數(shù)學(xué)教學(xué)中應(yīng)用數(shù)學(xué)建模思想的注意事項(xiàng)
4.1避免“題海戰(zhàn)術(shù)”
數(shù)學(xué)是一個(gè)系統(tǒng)學(xué)科,需要從頭開(kāi)始教學(xué),為此,教師一定要注意循序漸進(jìn)。首先,在教學(xué)過(guò)程中,教師可以從教材出發(fā),對(duì)概念、定理等進(jìn)行講解,讓學(xué)生進(jìn)行掌握與運(yùn)用,轉(zhuǎn)變教學(xué)模式,讓學(xué)生牢記教材知識(shí)。其次,慎重選擇例題練習(xí),避免題海戰(zhàn)術(shù),培養(yǎng)學(xué)生的數(shù)學(xué)建模思想,逐漸提高學(xué)生的數(shù)學(xué)素質(zhì)。
4.2強(qiáng)調(diào)學(xué)生的獨(dú)立思考
在以往高等數(shù)學(xué)教學(xué)中,均是采用“填鴨式”的教學(xué)模式,不管學(xué)生是否能夠接受,一味的講解教材知識(shí),不重視學(xué)生數(shù)學(xué)建模思想的培養(yǎng)。目前,在教學(xué)過(guò)程中,教師一定要強(qiáng)調(diào)學(xué)生獨(dú)立思考能力的培養(yǎng),通過(guò)數(shù)學(xué)模型的構(gòu)建,激發(fā)學(xué)生的求知欲與興趣,明確學(xué)習(xí)目標(biāo),培養(yǎng)學(xué)生的數(shù)學(xué)思維,進(jìn)而全面滲透數(shù)學(xué)建模思想,提高學(xué)生的數(shù)學(xué)素質(zhì)。
4.3注意恐懼心理的消除
在高等數(shù)學(xué)教學(xué)中,注意消除學(xué)生學(xué)習(xí)的恐懼心理及反感,提高課堂教學(xué)效果。在實(shí)際教學(xué)過(guò)程中,培養(yǎng)學(xué)生勇于面對(duì)錯(cuò)誤的品質(zhì),讓學(xué)生認(rèn)識(shí)到錯(cuò)誤并不可怕,可怕地是無(wú)法改正錯(cuò)誤,為此,一定要提高學(xué)生的抗打擊能力,幫助學(xué)生樹(shù)立學(xué)習(xí)的自信心,進(jìn)而展開(kāi)有效的學(xué)習(xí)。學(xué)習(xí)是一個(gè)需要不斷鞏固和加強(qiáng)的過(guò)程,在此過(guò)程中,必須加強(qiáng)教師的監(jiān)督作用,讓學(xué)生可以積極改正自身錯(cuò)誤,并且不會(huì)在同一個(gè)問(wèn)題上犯錯(cuò)誤,提高學(xué)生總結(jié)與反思的能力,在學(xué)習(xí)過(guò)程中形成數(shù)學(xué)思想,進(jìn)而不斷提高自身的數(shù)學(xué)成績(jī)。
5結(jié)語(yǔ)
總而言之,高等數(shù)學(xué)課堂教學(xué)是培養(yǎng)學(xué)生數(shù)學(xué)品質(zhì)的主要場(chǎng)所之一,通過(guò)高等數(shù)學(xué)教學(xué)和數(shù)學(xué)建模思想的結(jié)合,可以加深學(xué)生對(duì)高等數(shù)學(xué)知識(shí)的理解,進(jìn)而可以提高學(xué)生對(duì)高等數(shù)學(xué)知識(shí)的運(yùn)用能力。目前,在高等數(shù)學(xué)教學(xué)中,一定要重視數(shù)學(xué)建模思想的融入,改進(jìn)教學(xué)模式,促使教學(xué)內(nèi)容的全面展開(kāi),完成預(yù)期的教學(xué)任務(wù),提高學(xué)生的數(shù)學(xué)水平。
有關(guān)數(shù)學(xué)建模論文相關(guān)文章: