在引人中設(shè)問(wèn)并倡導(dǎo)探索數(shù)學(xué)學(xué)習(xí)
在引人中設(shè)問(wèn)并倡導(dǎo)探索數(shù)學(xué)學(xué)習(xí)
從數(shù)學(xué)學(xué)習(xí)的認(rèn)知本質(zhì)看,數(shù)學(xué)學(xué)習(xí)離不開(kāi)情境.事實(shí)上,學(xué)生學(xué)習(xí)知識(shí)的過(guò)程本身是一個(gè)建構(gòu)的過(guò)程,無(wú)論是對(duì)知識(shí)的理解,還是知識(shí)的運(yùn)用,都離不開(kāi)知識(shí)產(chǎn)生的環(huán)境和適用的范圍.新課標(biāo)強(qiáng)調(diào)讓學(xué)生在現(xiàn)實(shí)情境和已有的生活、知識(shí)經(jīng)驗(yàn)的基礎(chǔ)上學(xué)習(xí)和理解數(shù)學(xué),“問(wèn)題—情境”是數(shù)學(xué)課程標(biāo)準(zhǔn)倡導(dǎo)的教學(xué)模式.它包含兩層含義:首先是要有“問(wèn)題”,即當(dāng)學(xué)生利用已有的認(rèn)知還不能理解或者不能正確解答的數(shù)學(xué)問(wèn)題,當(dāng)然,問(wèn)題的障礙性不能影響學(xué)生接受和產(chǎn)生興趣,否則,至少不能稱(chēng)為好問(wèn)題;其次是“情境”,即數(shù)學(xué)知識(shí)產(chǎn)生或應(yīng)用的具體環(huán)境,這種環(huán)境可以是真實(shí)的生活環(huán)境、虛擬的社會(huì)環(huán)境、經(jīng)驗(yàn)性的想象環(huán)境,也可以是抽象的數(shù)學(xué)環(huán)境等等.因此,在新課的引入過(guò)程中,教師要對(duì)教材內(nèi)容進(jìn)行二次開(kāi)發(fā),精心創(chuàng)設(shè)問(wèn)題情境,通過(guò)教師的適當(dāng)引導(dǎo),使學(xué)生進(jìn)入最佳的學(xué)習(xí)狀態(tài),同時(shí)還要激活學(xué)生的主體意識(shí),充分調(diào)動(dòng)學(xué)生的積極性、主動(dòng)性和創(chuàng)造性,使學(xué)生最大限度地參與探究新知識(shí)活動(dòng),讓學(xué)生在參與中感受成功的興奮和學(xué)習(xí)的樂(lè)趣,促使學(xué)生全身心地投入學(xué)習(xí),注意把知識(shí)內(nèi)容與生活實(shí)踐結(jié)合起來(lái),精心設(shè)問(wèn).那么,創(chuàng)設(shè)引人問(wèn)題情境的基本策略是什么呢?如何在引人中設(shè)問(wèn)呢?
一、引疑激趣策略
教育近代教育學(xué)家斯賓塞指出:“教育要使人愉快,要讓一切教育有樂(lè)趣”.烏辛斯基也指出:“沒(méi)有絲毫興趣的強(qiáng)制性學(xué)習(xí),將會(huì)扼殺學(xué)生探求真理的欲望”.因此,教師設(shè)計(jì)問(wèn)題時(shí),要新穎別致,使學(xué)生學(xué)習(xí)有趣味感、新鮮感.
案例1:“二分法”的引入
在央視由著名節(jié)目主持人李泳主持的“非常6+1”中有一個(gè)欄目叫“競(jìng)猜價(jià)格”,你知道如何才能最快速度猜準(zhǔn)價(jià)格嗎?
“一石激起千層浪”學(xué)生紛紛議論,趁機(jī)我又設(shè)計(jì)了一個(gè)小游戲:同位同學(xué)相互合作猜生日,看那一組能用“最少的次數(shù)”猜出對(duì)方同學(xué)的生日?你共用了多少次?
通過(guò)創(chuàng)設(shè)趣味性的問(wèn)題情境,增強(qiáng)了學(xué)生的有意注意,調(diào)動(dòng)學(xué)生學(xué)習(xí)的主動(dòng)性和積極性,激發(fā)了學(xué)生學(xué)習(xí)的求知欲和學(xué)習(xí)數(shù)學(xué)的興趣.
二、以形助數(shù)策略
華羅庚說(shuō)過(guò):“數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微”.數(shù)形結(jié)合是研究數(shù)學(xué)的重要方法,“以形助數(shù)”是數(shù)形結(jié)合的主要方面,它借助圖形的性質(zhì),可以加深對(duì)概念、公式、定理的理解,體會(huì)概念、公式、定理的幾何意義。
三、設(shè)置坡度策略
心理學(xué)家把問(wèn)題從提出到解決的過(guò)程稱(chēng)為“解答距”.并根據(jù)解答距的長(zhǎng)短把它分為“微解答距”、“短解答距”、“長(zhǎng)解答距”和“新解答距”四個(gè)級(jí)別.所以,教師設(shè)計(jì)問(wèn)題應(yīng)合理配置幾個(gè)級(jí)別的問(wèn)題.對(duì)知識(shí)的重點(diǎn)、難點(diǎn),應(yīng)象攀登階梯一樣,由淺入深,由易到難,由簡(jiǎn)到繁,已達(dá)到掌握知識(shí)、培養(yǎng)能力的目的.
根據(jù)“解答距”的四個(gè)級(jí)別,層層設(shè)問(wèn),步步加難,把學(xué)生思維一步一個(gè)臺(tái)階引向求知的高度.在面對(duì)這樣一個(gè)題目時(shí),學(xué)生心理已經(jīng)有了準(zhǔn)備,不會(huì)感覺(jué)到無(wú)從下手.同時(shí)上一個(gè)問(wèn)題解決也為一般結(jié)論的得出提供了一個(gè)思考的方向.這樣知識(shí)的掌握的過(guò)程是一種平緩的過(guò)程,新的知識(shí)的形成不是一蹴而就的,理解起來(lái)就顯得比較容易接受,掌握起來(lái)就會(huì)顯得更加牢固.
四、巧設(shè)懸念策略
懸念是一種學(xué)習(xí)心理的強(qiáng)刺激,使學(xué)生產(chǎn)生“欲罷不能”的期待情境,能引起學(xué)生學(xué)習(xí)的興趣、調(diào)動(dòng)學(xué)生的思維和引發(fā)求知?jiǎng)訖C(jī).
五、聯(lián)系實(shí)際策略
新課標(biāo)指出:“強(qiáng)調(diào)從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問(wèn)題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過(guò)程”,數(shù)學(xué)來(lái)源于生活,并對(duì)生活起指導(dǎo)作用,在數(shù)學(xué)教學(xué)中教師應(yīng)根據(jù)生活和生產(chǎn)的實(shí)際而提出問(wèn)題,創(chuàng)設(shè)實(shí)際問(wèn)題情境,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)學(xué)習(xí)的現(xiàn)實(shí)主義,認(rèn)識(shí)到數(shù)學(xué)知識(shí)的價(jià)值,這樣也更容易激發(fā)學(xué)生的好奇心和興趣,培養(yǎng)學(xué)生的主體意識(shí).在我們身邊有許多數(shù)學(xué)問(wèn)題,如銀行分期付款、商品打折、最優(yōu)化等經(jīng)濟(jì)問(wèn)題;市政建設(shè)與環(huán)保問(wèn)題;時(shí)政新聞;計(jì)劃決策問(wèn)題;廣告的可信度問(wèn)題等等.
總之,在新課引人時(shí)的問(wèn)題情景一方面應(yīng)是學(xué)生關(guān)心的話(huà)題,能激發(fā)學(xué)生的學(xué)習(xí)積極性,另一方面應(yīng)使學(xué)生迫切想知道如何運(yùn)用所知識(shí)解決問(wèn)題,能喚起學(xué)生的求知欲.其次,注意問(wèn)題的趣味性.趣味性的知識(shí)總能吸引人,趣味性的問(wèn)題總能引發(fā)學(xué)生對(duì)問(wèn)題的探究和深層次的思考.在新課引人時(shí),多為學(xué)生提供一些數(shù)學(xué)史或其它有趣的知識(shí),既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又能擴(kuò)大學(xué)生的知識(shí)面并在穿插數(shù)學(xué)史介紹的過(guò)程中,加強(qiáng)對(duì)學(xué)生數(shù)學(xué)思想的滲透和數(shù)學(xué)文化的浸潤(rùn),讓學(xué)生在東西方數(shù)學(xué)文化觀的對(duì)比中,感受到數(shù)學(xué)理性精神對(duì)人類(lèi)進(jìn)步的偉大作用,從而提高學(xué)習(xí)數(shù)學(xué)的興趣.