初二幾何的學(xué)習(xí)方法是什么
初二幾何的學(xué)習(xí)方法是什么
幾何是數(shù)學(xué)中一個(gè)重要的學(xué)習(xí)重點(diǎn),提高初二的幾何成績(jī),才能很好的提高未來高中的空間幾何成績(jī)。下面是小編分享的初二幾何的學(xué)習(xí)方法,一起來看看吧。
初二幾何的學(xué)習(xí)方法
(一)對(duì)基礎(chǔ)知識(shí)的把握一定要牢固,在這個(gè)基礎(chǔ)上我們才能談如何學(xué)好的新問題。例如我們?cè)谧C實(shí)相似的時(shí)候,假如利用兩邊對(duì)應(yīng)成比例及其夾角相等的方法時(shí),必須注重所找的角是兩邊的夾角,而不能是其它角。在回答圓的對(duì)稱軸時(shí)不能說是它的直徑,而必須說是直徑所在的直線。像這樣的細(xì)節(jié)我們必須在平時(shí)就要引起足夠的重視并且牢固把握,只有這樣才是學(xué)好幾何的基礎(chǔ)。
(二)善于歸納總結(jié),熟悉常見的特征圖形。舉個(gè)例子,如圖,已知A,B,C三點(diǎn)共線,分別以AB,BC為邊向外作等邊△ABD和等邊△BCE,假如再?zèng)]有其他附加條件,那么你能從這個(gè)圖形中找到哪些結(jié)論?
假如我們通過很多習(xí)題能夠總結(jié)出:一般情況下題目中假如有兩個(gè)有公共頂點(diǎn)的等邊三角形就必然會(huì)出現(xiàn)一對(duì)旋轉(zhuǎn)式的全等三角形的結(jié)論,這樣我們很輕易得出△ABE≌△DBC,在這對(duì)全等三角形的基礎(chǔ)上我們還會(huì)得出△EMB≌△CNB,△MBN是等邊三角形,MN∥AC等主要結(jié)論,這些結(jié)論也會(huì)成為解決其它新問題的橋梁。在幾何的學(xué)習(xí)中這樣典型的圖形很多,要善于總結(jié)。
(三)熟悉解題的常見著眼點(diǎn),常用輔助線作法,把大新問題細(xì)化成各個(gè)小新問題,從而各個(gè)擊破,解決新問題。在我們對(duì)一個(gè)新問題還沒有切實(shí)的解決方法時(shí),要善于捕捉可能會(huì)幫助你解決新問題的著眼點(diǎn)。例如,在一個(gè)非直角三角形中出現(xiàn)了非凡的角,那你應(yīng)該馬上想到作垂直構(gòu)造直角三角形。因?yàn)榉欠步侵挥性诜欠残沃胁艜?huì)發(fā)揮功能。再比如,在圓中出現(xiàn)了直徑,馬上就應(yīng)該想到連出90°的圓周角。碰到梯形的計(jì)算或者證實(shí)新問題時(shí),首先我們心里必須清楚碰到梯形新問題都有哪些輔助線可作,然后再具體新問題具體分析。舉個(gè)例子說,假如題目中說到梯形的腰的中點(diǎn),你想到了什么?你必須想到以下幾條,第一你必須想到梯形的中位線定理。第二你必須想到可以過一腰的中點(diǎn)平移另一腰。第三你必須想到可以連接一個(gè)頂點(diǎn)和腰的中點(diǎn)然后延長(zhǎng)去構(gòu)造全等三角形。只有這幾種可能用到的輔助線爛熟于心,我們才能很好的解決新問題。其實(shí)很多時(shí)候我們只要抓住這些常見的著眼點(diǎn),試著去作了,那么新問題也就迎刃而解了。另外只要我們想到了,一定要肯于去嘗試,只有你去做了才可能成功。
初中生提高幾何學(xué)習(xí)能力的方法
根據(jù)初一學(xué)生年齡,能力特點(diǎn),對(duì)點(diǎn)、線、面、體以及幾何圖形、平面圖形、立體圖形等概念,教學(xué)中要借助于教具、模型、實(shí)物、圖形等具體描述,先得到直觀的感性認(rèn)識(shí),在感知基礎(chǔ)上,培養(yǎng)學(xué)生的抽象思維。從小學(xué)學(xué)過的線段、三角形、正方形、圓柱圖形以及面積和體積的計(jì)算,說明早已學(xué)習(xí)了一些幾何知以。學(xué)生對(duì)幾何就有一種“老朋友”的親切感。然后鼓勵(lì)學(xué)生只要勤奮努力地學(xué)習(xí),我們完全可以把它學(xué)好,樹立學(xué)幾何的信心。
上到初中,幾何跟小學(xué)的也差不多,只是不單純只是認(rèn)識(shí)某些幾何圖形,而且要學(xué)習(xí)它的構(gòu)成,它的特點(diǎn),這就要求他們要多開動(dòng)腦筋,發(fā)展空間想像能力,如:通過手電筒或探照燈“射”出的光束,說明射線的意義,行進(jìn)中的火把、飛行中的螢火蟲等實(shí)例,認(rèn)識(shí)點(diǎn)動(dòng)成線、線動(dòng)成面、面動(dòng)成體等等。比如學(xué)到錐、柱、球的時(shí)候,必須先制作好模型,這樣才能更好的讓學(xué)生們直觀感受到幾何體,先讓他們?cè)谀X海中樹立這些幾何體的形象,然后再拆分開來看它的構(gòu)成,包括線、面的特點(diǎn)。在畫三視圖的時(shí)候,拿出正方體讓學(xué)生們動(dòng)手?jǐn)[出所要求的幾何體并上前從不同的方向看它,然后畫出它的三視圖,然后依據(jù)老師畫的俯視圖擺出相應(yīng)的幾何體,多次反復(fù),最后總結(jié)經(jīng)驗(yàn),可以讓學(xué)生更能記住,更形象生動(dòng)有趣,又有動(dòng)手能力。
初二數(shù)學(xué)的學(xué)習(xí)方法
第一點(diǎn),深刻理解概念。
概念是數(shù)學(xué)的基石,學(xué)習(xí)概念(包括定理、性質(zhì))不僅要知其然,還要知其所以然,許多同學(xué)只注重記概念,而忽視了對(duì)其背景的理解,這樣是學(xué)不好數(shù)學(xué)的,對(duì)于每個(gè)定義、定理,我們必須在牢記其內(nèi)容的基礎(chǔ)上知道它是怎樣得來的,又是運(yùn)用到何處的,只有這樣,才能更好地運(yùn)用它來解決問題。
深刻理解概念,還需要多做一些練習(xí),什么是“多做多練習(xí)”,怎樣“多做練習(xí)”呢?
第二點(diǎn),多看一些例題。
細(xì)心的朋友會(huì)發(fā)現(xiàn),老師在講解基礎(chǔ)內(nèi)容之后,總是給我們補(bǔ)充一些課外例、習(xí)題,這是大有裨益的,我們學(xué)的概念、定理,一般較抽象,要把它們具體化,就需要把它們運(yùn)用在題目中,由于我們剛接觸到這些知識(shí),運(yùn)用起來還不夠熟練,這時(shí),例題就幫了我們大忙,我們可以在看例題的過程中,將頭腦中已有的概念具體化,使對(duì)知識(shí)的理解更深刻,更透徹,由于老師補(bǔ)充的例題十分有限,所以我們還應(yīng)自己找一些來看,看例題,還要注意以下幾點(diǎn):1.不能只看皮毛,不看內(nèi)涵。
我們看例題,就是要真正掌握其方法,建立起更寬的解題思路,如果看一道就是一道,只記題目不記方法,看例題也就失去了它本來的意義,每看一道題目,就應(yīng)理清它的思路,掌握它的思維方法,再遇到類似的題目或同類型的題目,心中有了大概的印象,做起來也就容易了,不過要強(qiáng)調(diào)一點(diǎn),除非有十分的把握,否則不要憑借主觀臆斷,那樣會(huì)犯經(jīng)驗(yàn)主義錯(cuò)誤,走進(jìn)死胡同的。
2.要把想和看結(jié)合起來。
我們看例題,在讀了題目以后,可以自己先大概想一下如何做,再對(duì)照解答,看自己的思路有哪點(diǎn)比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,總結(jié)經(jīng)驗(yàn)。
3.各難度層次的例題都照顧到。
看例題要循序漸進(jìn),這同后面的“做練習(xí)”一樣,但看比做有一個(gè)顯著的好處:例題有現(xiàn)成的解答,思路清晰,只需我們循著它的思路走,就會(huì)得出結(jié)論,所以我們可以看一些技巧性較強(qiáng)、難度較大,自己很難解決,而又不超出所學(xué)內(nèi)容的例題,例如中等難度的競(jìng)賽試題。
這樣可以豐富知識(shí),拓寬思路,這對(duì)提高綜合運(yùn)用知識(shí)的能力很有幫助。
學(xué)好數(shù)學(xué),看例題是很重要的一個(gè)環(huán)節(jié),切不可忽視。
第三點(diǎn),多做練習(xí)。
要想學(xué)好數(shù)學(xué),必須多做練習(xí),但有的同學(xué)多做練習(xí)能學(xué)好,有的同學(xué)做了很多練習(xí)仍舊學(xué)不好,究其因,是“多做練習(xí)”是否得法的問題,我們所說的“多做練習(xí)”,不是搞“題海戰(zhàn)術(shù)”。后者只做不思,不能起到鞏固概念,拓寬思路的作用,而且有“副作用”:把已學(xué)過的知識(shí)攪得一塌糊涂,理不出頭緒,浪費(fèi)時(shí)間又收獲不大,我們所說的“多做練習(xí)”,是要大家在做了一道新穎的題目之后,多想一想:它究竟用到了哪些知識(shí),是否可以多解,其結(jié)論是否還可以加強(qiáng)、推廣,等等,還要真正掌握方法,切實(shí)做到以下三點(diǎn),才能使“多做練習(xí)”真正發(fā)揮它的作用。
1.必須熟悉各種基本題型并掌握其解法。
課本上的每一道練習(xí)題,都是針對(duì)一個(gè)知識(shí)點(diǎn)出的,是最基本的題目,必須熟練掌握;課外的習(xí)題,也有許多基本題型,其運(yùn)用方法較多,針對(duì)性也強(qiáng),應(yīng)該能夠迅速做出。
許多綜合題只是若干個(gè)基本題的有機(jī)結(jié)合,基本題掌握了,不愁解不了它們。
2.在解題過程中有意識(shí)地注重題目所體現(xiàn)的出的思維方法,以形成正確的思維定勢(shì)。
數(shù)學(xué)是思維的世界,有著眾多思維的技巧,所以每道題在命題、解題過程中,都會(huì)反映出一定的思維方法,如果我們有意識(shí)地注重這些思維方法,時(shí)間長(zhǎng)了頭腦中便形成了對(duì)每一類題型的“通用”解法,即正確的思維定勢(shì),這時(shí)在解這一類的題目時(shí)就易如反掌了;同時(shí),掌握了更多的思維方法,為做綜合題奠定了一定的基礎(chǔ)。
3.多做綜合題。
綜合題,由于用到的知識(shí)點(diǎn)較多,頗受命題人青睞。
做綜合題也是檢驗(yàn)自己學(xué)習(xí)成效的有力工具,通過做綜合題,可以知道自己的不足所在,彌補(bǔ)不足,使自己的數(shù)學(xué)水平不斷提高。
“多做練習(xí)”要長(zhǎng)期堅(jiān)持,每天都要做幾道,時(shí)間長(zhǎng)了才會(huì)有明顯的效果和較大的收獲。
猜你感興趣:
1.八年級(jí)英語學(xué)霸的學(xué)習(xí)方法推薦
2.初二各科優(yōu)秀的學(xué)習(xí)方法有哪些