特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學習啦 > 新聞資訊 > 教育 >

2019中考數(shù)學得高分的學習方法揭秘

時間: 書榮1192 分享

  數(shù)學要想得到高分其實并沒有想象中那么困難。下面學習啦小編為大家解答2019中考數(shù)學得高分的學習方法揭秘,希望對你有所幫助!

  初中數(shù)學學習方法揭秘

  日本數(shù)學家米山國藏在名著《數(shù)學的精神、思想和方法》一書中曾論及數(shù)學的一個特征:

  數(shù)學是由簡單明了的事項一步一步地發(fā)展而來,所以,只要學習數(shù)學的人老老實實地、一步一步地去理解,并同時記住其要點,以備以后之需用,就一定能理解其全部內(nèi)容.就是說,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.這好比梯子的階級,在登梯子時,一級一級地往上登,無論多小的人,只要他的腿長足以跨過一級階梯,就一定能從第一級登上第二級,從第二級登上第三級、第四級,…….這時,只不過是反復地做同一件事,故不管誰都應該會做.

  現(xiàn)在讓我們舉一組例題來幫助理解:

  例1 計算:(-2)+(-5)+4

  解:原式=-7+4

  =-3.

  例2 化簡:-2x-5x+4x

  解:原式=(-2-5+4)x

  =-3x.

  例3 解方程:-2x-5x+4x+3=0.

  解:-3x+3=0

  3x=3

  ∴x=1.

  例4 解不等式:-2x-5x+4x+3>0.

  解:-3x+3>0

  3x<3

  &there4;x<1.

  例5 求直線y=-3x+3與x軸交點坐標.

  解:令y=0,有-3x+3=0.

  解得x=1.

  即直線y=-3x+3與x軸交點為(1,0).

  點評:相信例1~例3是六年級同學都能理解的,而它們正是初一數(shù)學上冊《有理數(shù)》、《整式加減》、《一元一次方程》要學習的內(nèi)容,例4是七年級下學期《一元一次不等式》的內(nèi)容,例5是初二數(shù)學《一次函數(shù)》的內(nèi)容.我們例舉出來,正是想說明,數(shù)學知識就是這樣一步一步的前進.試想,如果例1的計算不熟練甚至出錯,那么化簡"-2x-5x+4x"就容易出錯,接著求解一元一次方程"-2x-5x+4x+3=0"時當然又會遇上困難,等到八年級所謂的新知識"函數(shù)"出現(xiàn)時,又需要解方程這個必備的技能發(fā)揮作用.

  這樣看來,學習數(shù)學確實需要像米山國藏告誡的那樣,一步一步向前走、向上登!而且只要長年累月地、不停地攀登,最終一定可以達到"摩天"的高度,一定可以達到連自己也會發(fā)出"我竟然也能來到這么高的地方"的驚嘆的境界.

  但若不是這樣一步一步地前進,而是企圖一次跳過五、六級,則無論有多長的腿,也是做不到的.某位同學因懶惰或生病缺席而未學應掌握的定理、法則,就直接去學后面的內(nèi)容,無論他多么聰明,都絕不可能學好.可以發(fā)現(xiàn),數(shù)學的一大特征在于,若依其道而行,則無論什么人都能理解它,若反其道而行,則無論多么聰明的人都無法理解它.

  特別地,學習過一元一次不等式和一次函數(shù)知識的同學,看到這樣的一串例題(例1~例5),是不是也應該能體會到學習數(shù)學就應該這樣關聯(lián)著、聯(lián)系著,讓學過的知識像一串葡萄那樣輕松地被拎起來,這樣我們也就達到了對數(shù)學知識的深刻理解!

  最后,我們用南京大學哲學系鄭毓信教授關于數(shù)學學習的經(jīng)驗與大家共勉:

  基礎知識不應求全,而應求聯(lián);

  基本技能不應求全,而應求變;

  基本思想不應求多,而應求用.

  提高數(shù)學成績的四大技巧

  一 該記的記,該背的背,不要以為理解了就行

  有的同學認為,數(shù)學不像英語、史地,要背單詞、背年代、背地名,數(shù)學靠的是智慧、技巧和推理。我說你只講對了一半。數(shù)學同樣也離不開記憶。

  因此,數(shù)學的定義、法則、公式、定理等一定要記熟,有些最好能背誦,朗朗上口。比如大家熟悉的“整式乘法三個公式”,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學敲一敲警鐘,如果背不出這三個公式,將會對今后的學習造成很大的麻煩,因為今后的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。

  對數(shù)學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。打一個比方,數(shù)學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數(shù)學的定義、法則、公式、定理就很難解數(shù)學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數(shù)學題,甚至是解數(shù)學難題中得心應手。

  1、“方程”的思想

  數(shù)學是研究事物的空間形式和數(shù)量關系的,初中最重要的數(shù)量關系是等量關系,其次是不等量關系。最常見的等量關系就是“方程”。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度_間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。

  物理中的能量守恒,化學中的化學平衡式,現(xiàn)實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好其它形式的方程。

  所謂的“方程”思想就是對于數(shù)學問題,特別是現(xiàn)實當中碰到的未知量和已知量的錯綜復雜的關系,善于用“方程”的觀點去構建有關的方程,進而用解方程的方法去解決它。

  2、“數(shù)形結合”的思想

  大千世界,“數(shù)”與“形”無處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小這兩個屬性,就交給數(shù)學去研究了。初中數(shù)學的兩個分支棗-代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結合”是一種趨勢,越學下去,“數(shù)”與“形”越密不可分,到了高中,就出現(xiàn)了專門用代數(shù)方法去研究幾何問題的一門課,叫做“解析幾何”。

  3、“對應”的思想

  “對應”的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應一個抽象的數(shù)“1”,將兩只眼睛、一對耳環(huán)、雙胞胎對應一個抽象的數(shù)“2”;隨著學習的深入,我們還將“對應”擴展到對應一種形式,對應一種關系,等等。比如我們在計算或化簡中,將對應公式的左邊,對應a,y對應b,再利用公式的右邊直接得出原式的結果即。

  三 自學能力的培養(yǎng)是深化學習的必由之路

  在學習新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂“溫故而知新”。因此說,數(shù)學是一門能自學的學科,自學成才最典型的例子就是數(shù)學家華羅庚。

  我們在課堂上聽老師講解,不光是學習新知識,更重要的是潛移默化老師的那種數(shù)學思維習慣,逐漸地培養(yǎng)起自己對數(shù)學的一種悟性。

  自學能力越強,悟性就越高。隨著年齡的增長,同學們的依賴性應不斷減弱,而自學能力則應不斷增強。因此,要養(yǎng)成預習的習慣。

  因此,以前的數(shù)學學得扎實,就為以后的進取奠定了基礎,就不難自學新課。同時,在預習新課時,碰到什么自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。

  學來學去,知識還是別人的。檢驗數(shù)學學得好不好的標準就是會不會解題。聽懂并記憶有關的定義、法則、公式、定理,只是學好數(shù)學的必要條件,能獨立解題、解對題才是學好數(shù)學的標志。

  四 自信才能自強

  在考試中,總是看見有些同學的試卷出現(xiàn)許多空白,即有好幾題根本沒有動手去做。當然,俗話說,藝高膽大,藝不高就膽不大。但是,做不出是一回事,沒有去做則是另一回事。稍為難一點的數(shù)學題都不是一眼就能看出它的解法和結果的。要去分析、探索、比比畫畫、寫寫算算,經(jīng)過迂回曲折的推理或演算,才顯露出條件和結論之間的某種聯(lián)系,整個思路才會明朗清晰起來。

  具體解題時,一定要認真審題,緊緊抓住題目的所有條件不放,不要忽略了任何一個條件。一道題和一類題之間有一定的共性,可以想想這一類題的一般思路和一般解法,但更重要的是抓住這一道題的特殊性,抓住這一道題與這一類題不同的地方。數(shù)學的題目幾乎沒有相同的,總有一個或幾個條件不盡相同,因此思路和解題過程也不盡相同。有些同學老師講過的題會做,其它的題就不會做,只會依樣畫瓢,題目有些小的變化就干瞪眼,無從下手。

  數(shù)學題目是無限的,但數(shù)學的思想和方法卻是有限的。我們只要學好了有關的基礎知識,掌握了必要的數(shù)學思想和方法,就能順利地對付那無限的題目。題目并不是做得越多越好,題海無邊,總也做不完。關鍵是你有沒有培養(yǎng)起良好的數(shù)學思維習慣,有沒有掌握正確的數(shù)學解題方法。

  解題需要豐富的知識,更需要自信心。沒有自信就會畏難,就會放棄;只有自信,才能勇往直前,才不會輕言放棄,才會加倍努力地學習,才有希望攻克難關,迎來屬于自己的春天。


4165739