特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學習啦 > 學習方法 > 通用學習方法 > 學習方法指導 > 數學考試中三角函數題的應用

數學考試中三角函數題的應用

時間: 文軒0 分享

數學考試中三角函數題的應用!

在考試前,合理安排時間進行全面復習。重點復習課堂筆記、習題集和課本內的重要知識點,并進行針對性的練習和解答。下面是小編為大家?guī)淼?/span>數學考試中三角函數題的應用,希望大家能夠喜歡!快來看看吧!

數學考試中三角函數題的應用

數學考試中三角函數題的應用

注意歸一公式、誘導公式的正確性(轉化成同名同角三角函數時,套用歸一公式、誘導公式(奇變、偶不變;符號看象限)時,很容易因為粗心,導致錯誤!一著不慎,滿盤皆輸!)。

數列題

1、證明一個數列是等差(等比)數列時,最后下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數列;

2、最后一問證明不等式成立時,如果一端是常數,另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學歸納法(用數學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設后,如何把當前的式子轉化到目標式子,一般進行適當的放縮,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證;

3、證明不等式時,有時構造函數,利用函數單調性很簡單(所以要有構造函數的意識)。

函數與方程思想

函數思想是指運用運動變化的觀點,分析和研究數學中的`數量關系,通過建立函數關系(或構造函數)運用函數的圖像和性質去分析問題、轉化問題和解決問題;方程思想,是從問題的數量關系入手,運用數學語言將問題轉化為方程(方程組)或不等式模型(方程、不等式等)去解決問題。利用轉化思想我們還可進行函數與方程間的相互轉化。

數形結合思想

中學數學研究的對象可分為兩大部分,一部分是數,一部分是形,但數與形是有聯系的,這個聯系稱之為數形結合或形數結合。它既是尋找問題解決切入點的“法寶”,又是優(yōu)化解題途徑的“良方”,因此我們在解答數學題時,能畫圖的盡量畫出圖形,以利于正確地理解題意、快速地解決問題。

概率問題

1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數;

2、搞清是什么概率模型,套用哪個公式;

3、記準均值、方差、標準差公式;

4、求概率時,正難則反(根據p1+p2+...+pn=1);

5、注意計數時利用列舉、樹圖等基本方法;

6、注意放回抽樣,不放回抽樣;

7、注意“零散的”的知識點(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;

8、注意條件概率公式;

9、注意平均分組、不完全平均分組問題。

沉著應對考試,確保旗開得勝

良好的開端是成功的一半,從考試心理角度來說,這確實是有道理的,拿到試題后,不要急于求成、立即下手解題,而應通覽全卷,摸透題情,然后選擇好答題順序,再穩(wěn)操一兩道易題熟題,讓自己產生"旗開得勝"的快意,從而有一個良好的開端,以振奮精神,鼓舞士氣,很快進入最佳思維狀態(tài),之后做一題得一題,不斷產生正激勵,穩(wěn)拿中低,見機攀高。

2006845