特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初一學(xué)習(xí)方法 > 七年級數(shù)學(xué) > 七年級數(shù)學(xué)寒假作業(yè)答案

七年級數(shù)學(xué)寒假作業(yè)答案

時間: 鄭曉823 分享

七年級數(shù)學(xué)寒假作業(yè)答案

  寒假作業(yè)是寒假內(nèi)七年級數(shù)學(xué)教師給學(xué)生布置的作業(yè),新學(xué)期歸來了,你的寒假作業(yè)做得怎么樣?學(xué)習(xí)啦為大家整理了七年級數(shù)學(xué)寒假作業(yè)的答案,歡迎大家閱讀!

  七年級數(shù)學(xué)寒假作業(yè)答案1-3節(jié)

  1.走進美妙的數(shù)學(xué)世界 答案

  1.9(n-1)+n=10n-9 2.630 3. =36% 4.133,23 2000=24•×53 •

  5.•2520,•a=2520n+1 6.A 7.C 8.B 9.C 10.C

  11.6個,95 這個兩位數(shù)一定是2003-8=1995的約數(shù),而1995=3×5×7×19

  12. 13.

  14.觀察圖形數(shù)據(jù),歸納其中規(guī)律得:n棱柱有(n+2)個面,2n個頂點,3n•條棱.• •

  15.D 16.A 17.C S不會隨t的增大則減小,修車所耽誤的幾分鐘內(nèi),路程不變,•修完車后繼續(xù)勻速行進,路程應(yīng)增加.

  18.C 9+3×4+2×4+1×4=33. 19.略

  20.(1)(80-59)÷59×100%≈36% (2)13÷80×100%≈16% •

  (3)•1995•年~1996年的增長率為(68-59)÷59×100%≈15%,

  同樣的方法可得其他年度的增長率,增長率最高的是1995年~1996年度.

  21.(1)乙商場的促銷辦法列表如下:

  購買臺數(shù) 111~8臺 9~16臺 17~24臺 24臺以上

  每臺價格 720元 680元 640元 600元

  (2)比較兩商場的促銷辦法,可知:

  購買臺數(shù) 1~5臺 6~8臺 9~10臺 11~15臺

  選擇商場 乙 甲、乙 乙 甲、乙

  購買臺數(shù) 16臺 17~19臺 20~24臺 24臺以上

  選擇商場 甲 甲、乙 甲 甲、乙

  因為到甲商場買21臺VCD時共需600×21=12600元,而到乙商場買20•臺VCD•共需640×20=12800元,12800>12600,

  所以購買20臺VCD時應(yīng)去甲商場購買.

  所以A單位應(yīng)到乙商場購買,B單位應(yīng)到甲商場購買,C單位應(yīng)到甲商場購買.

  22.(1)根據(jù)條件,把可分得的邊長為整數(shù)的長方形按面積從小到大排列,有

  1×1,1×2,1×3,1×4,2×2,1×5,2×3,2×4,3×3,2×5,3×4,3×5.

  若能分成5張滿足條件的紙片,因為其面積之和應(yīng)為15,所以滿足條件的有

  1×1,1×2,1×3,1×4,1×5(如圖①)或1×1,1×2,1×3,2×2,1×5(如圖②)

  2.從算術(shù)到代數(shù) 答案

  1.n2+n=n(n+1) 2.109 3. 4.150分鐘 5.C 6.D 7.B 8.B

  9.(1)S=n2 (2)①100 ②132-52=144 (3)n=15

  10.(1)a得 = .

  11.S=4n-4 12. b2 13.595 14.(1)18;(2)4n+2

  15.A 設(shè)自然數(shù)從a+1開始,這100個連續(xù)自然數(shù)的和為

  (a+1)+(a+2)+•…+(a+100)=100a+5050.

  16.C 第一列數(shù)可表示為2m+1,第二列數(shù)可表示為5n+1,

  由2m+1=5n+1,得n= m,m=0,5,10„1000

  18.D 提示:每一名同學(xué)每小時所搬磚頭為 塊,c名同學(xué)按此速度每小時搬磚頭 塊.

  19.提示:a1=1,a2= ,a3= „„,an= ,原式= .

  20.設(shè)每臺計算器x元,每本《數(shù)學(xué)競賽講座》書y元,則100(x+3y)=80(x+5y),解得x=5y,故可購買計算器 =160(臺),書 =800(本).

  (2)若能分成6張滿足條件的紙片,則其面積之和仍應(yīng)為15,•但上面排在前列的6個長方形的面積之和為1×1+1×2+1×3+1×4+2×2+1×5=19>15.所以分成6•張滿足條件的紙片是不可能的.

  3.創(chuàng)造的基石──觀察、歸納與猜想 答案

  1.(1)6,(2)2003. 2.a+b=c+d-14或a+c=b+d-2或a+d=b+c 3.13,3n+1 4.•C

  5.B 提示:同時出現(xiàn)在這兩個數(shù)串中的數(shù)是1~1999的整數(shù)中被6除余1的數(shù),共有334個.

  6.C

  7.提示:觀察已經(jīng)寫出的數(shù),發(fā)現(xiàn)每三個連續(xù)數(shù)中恰有一個偶數(shù),在前100項中,•第100項是奇數(shù),前99項中有 =33個偶數(shù).

  8.提示:經(jīng)觀察可得這個自然數(shù)表的排列特點:

 ?、俚谝涣械拿恳粋€數(shù)都是完全平方數(shù),并且恰好等于它所在行數(shù)的平方,即第n行的第1個數(shù)為n2;

 ?、诘谝恍械趎•個數(shù)是(n-1)2+1;

 ?、鄣趎行中從第一個數(shù)至第n個數(shù)依次遞減1;

 ?、艿趎列中從第一個數(shù)至第n個數(shù)依次遞增1.

  這樣可求:(1)上起第10行,左起第13列的數(shù)應(yīng)是第13列的第10個數(shù),即

  [(13-1)2+1]+9=154.

  (2)數(shù)127滿足關(guān)系式 127=112+6=[(12-1)2+1]+5,即127在左起12列,上起第6•行的位置.

  9.(1)(2n+1)(2n+3)=4(n+1)2-1;

  (2) ,- 各行數(shù)的個數(shù)分別為1,2,3,„ ,求出第1行至第198行和第1行至第1997行共有多少個問題就容易解決.

  10.7n+6,285 11.林 12.S=7×4(n-1)-5n=23n-8(n≥3) 13.B 14.C

  15.(1)提示:是,原式= × 5;

  (2)原式= 結(jié)果中的奇數(shù)數(shù)字有n-1個.

  16.(1)略;(2)頂點數(shù)+面數(shù)-棱數(shù)=2;(3)按要求畫圖,驗證(2)的結(jié)論.

  17.(1)一般地,我們有(a+1)+( )= = =(a+1)•

  (2)類似的問題如:

 ?、僭鯓拥膬蓚€數(shù),它們的差等于它們的商? ②怎樣的三個數(shù),它們的和等于它們的積?

  七年級數(shù)學(xué)寒假作業(yè)答案4-6節(jié)

  4.相反數(shù)與絕對值 答案

  1.(1)A;(2)C;(3)D 2.(1)0;(2)144;(3)3或-9.

  3.a=0,b= .原式=- 4.0,±1,±2,„,±1003.其和為0.

  5.a=1,b=2.原式= .

  6.a-c 7.m= -x3,n= +x.

  ∵m=( +x)( +x2-1)=n[( +x)2-3]=n(n2-3)=n3-3n.

  8.p=3,q=-1.原式=669×3-(-1)2=2006.

  5.物以類聚──話說同類項 答案

  1.1 2.(1)-3,1 (2)8. 3.4000000 4.-4 5.C 6.C 7.A 8.A

  9.D=•3x2-7y+4y2,F=9x2-11xy+2y2

  10.12 提示:由題意得b=m-1=n,c=2n-1=m,0.625a=0.25+(-0.125).

  11.對 12.- 13.22

  14.3775 提示:不妨設(shè)a>b,原式=a,•

  由此知每組數(shù)的兩個數(shù)代入代數(shù)式運算后的結(jié)果為兩個數(shù)中較大的一個,

  從整體考慮,只要將51,52,53,„,100這50•個數(shù)依次代入每一組中,便可得50個值的和的最大值.

  15.D 16.D 17.B 18.B 提示:2+3+„+9+10=54,而8+9+10=27.

  6.一元一次方程 答案

  1.-105.

  2.設(shè)原來輸入的數(shù)為x,則 -1=-0.75,解得x=0.2

  3.- ;90 4. 、- 5.•D •6.A 7.A 8.B

  9.(1)當(dāng)a≠b時,方程有惟一解x= ;當(dāng)a=b時,方程無解;

  (2)當(dāng)a≠4時,•方程有惟一解x= ;

  當(dāng)a=4且b=-8時,方程有無數(shù)個解;

  當(dāng)a=4且b≠-8時,方程無解;

  (3)當(dāng)k≠0且k≠3時,x= ;

  當(dāng)k=0且k≠3時,方程無解;

  當(dāng)k=3時,方程有無數(shù)個解.

  10.提示:原方程化為0x=6a-12.

  (1)當(dāng)a=2時,方程有無數(shù)個解;

  當(dāng)a≠2時,方程無解.

  11.10.5 12.10、26、8、-8 提示:x= ,9-k│17,則9-k=±1或9-k=±17.

  13.2000 提示:把( + )看作一個整體. 14.1.5 15.A 16.B 17.B

  18.D 提示:x= 為整數(shù),又2001=1×3×23×29,k+1

  可取±1、±3、±23、•±29、±(3×23)、±(3×29)、±(23×29)、±2001共16個值,其對應(yīng)的k值也有16個.

  19.有小朋友17人,書150本. 20.x=5

  21.提示:將x=1代入原方程并整理得(b+4)k=13-2a,

  此式對任意的k值均成立,

  即關(guān)于k的方程有無數(shù)個解.

  故b+4=0且13-2a=0,解得a= ,b=-4.

  22.提示:設(shè)框中左上角數(shù)字為x,

  則框中其它各數(shù)可表示為:

  x+1,x+2,x+3,x+•7,x+8,x+9,x+10,x+14,x+15,x+16,x+17,x+21,x+22,x+23,x+24,

  由題意得:

  x+(x+1)+(x+2)+(x+3)+„x+24=1998或1999或2000或2001,

  即16x+192=•2000•或2080

  解得x=113或118時,16x+192=2000或2080

  又113÷7=16„余1,

  即113是第17排1個數(shù),

  該框內(nèi)的最大數(shù)為113+24=137;118÷7=16„余6,

  即118是第17排第6個數(shù),

  故方框不可框得各數(shù)之和為2080.

  >>>下一頁更多精彩“七年級數(shù)學(xué)寒假作業(yè)答案”

972160