特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高二學(xué)習(xí)方法 > 高二數(shù)學(xué) > 高二數(shù)學(xué)必修三第一章知識(shí)點(diǎn)總結(jié)

高二數(shù)學(xué)必修三第一章知識(shí)點(diǎn)總結(jié)

時(shí)間: 鳳婷983 分享

高二數(shù)學(xué)必修三第一章知識(shí)點(diǎn)總結(jié)

  學(xué)數(shù)學(xué)的真正效果不是體現(xiàn)在應(yīng)試教育上,而是將來(lái)自身的腦力思維上。下面是學(xué)習(xí)啦小編給大家?guī)?lái)的高二數(shù)學(xué)必修三第一章知識(shí)點(diǎn)總結(jié),希望對(duì)你有幫助。

  高二數(shù)學(xué)必修三第一章知識(shí)點(diǎn)

  一.算法的概念

  1、算法概念:在數(shù)學(xué)上,現(xiàn)代意義上的“算法”通常是指可以用計(jì)算機(jī)來(lái)解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.

  2. 算法的特點(diǎn):(1)有限性:一個(gè)算法的步驟序列是有限的,必須在有限操作之后停止,不能是無(wú)限的.

  (2)確定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當(dāng)是模棱兩可.

  (3)順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個(gè)步驟只能有一個(gè)確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進(jìn)行下一步,并且每一步都準(zhǔn)確無(wú)誤,才能完成問題.

  (4)不唯一性:求解某一個(gè)問題的解法不一定是唯一的,對(duì)于一個(gè)問題可以有不同的算法.

  (5)普遍性:很多具體的問題,都可以設(shè)計(jì)合理的算法去解決,如心算、計(jì)算器計(jì)算都要經(jīng)過有限、事先設(shè)計(jì)好的步驟加以解決.

  二. 程序框圖

  1、程序框圖基本概念:

  一)程序構(gòu)圖的概念:程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說(shuō)明來(lái)準(zhǔn)確、直觀地表示算法的圖形。

  一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說(shuō)明。

  二)構(gòu)成程序框的圖形符號(hào)及其作用

  學(xué)習(xí)這部分知識(shí)的時(shí)候,要掌握各個(gè)圖形的形狀、作用及使用規(guī)則,畫程序框圖的規(guī)則如下:

  1、使用標(biāo)準(zhǔn)的圖形符號(hào)。

  2、框圖一般按從上到下、從左到右的方向畫。

  3、除判斷框外,大多數(shù)流程圖符號(hào)只有一個(gè)進(jìn)入點(diǎn)和一個(gè)退出點(diǎn)。判斷框具有超過一個(gè)退出點(diǎn)的唯一符號(hào)。

  4、判斷框分兩大類,一類判斷框“是”與“否”兩分支的判斷,而且有且僅有兩個(gè)結(jié)果;另一類是多分支判斷,有幾種不同的結(jié)果。

  5、在圖形符號(hào)內(nèi)描述的語(yǔ)言要非常簡(jiǎn)練清楚。

  三)、算法的三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)。

  1、順序結(jié)構(gòu):順序結(jié)構(gòu)是最簡(jiǎn)單的算法結(jié)構(gòu),語(yǔ)句與語(yǔ)句之間,框與框之間是按從上到下的順序進(jìn)行的,它是由若干個(gè)依次執(zhí)行的處理步驟組成的,它是任何一個(gè)算法都離不開的一種基本算法結(jié)構(gòu)。

  順序結(jié)構(gòu)在程序框圖中的體現(xiàn)就是用流程線將程序框自上而下地連接起來(lái),按順序執(zhí)行算法步驟。如在示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)行B框所指定的操作。

  2、條件結(jié)構(gòu):

  條件結(jié)構(gòu)是指在算法中通過對(duì)條件的判斷

  根據(jù)條件是否成立而選擇不同流向的算法結(jié)構(gòu)。

  條件P是否成立而選擇執(zhí)行A框或B框。無(wú)論P(yáng)條件是否成立,只能執(zhí)行A框或B框之一,

  不可能同時(shí)執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行。一個(gè)判斷結(jié)構(gòu)可以有多個(gè)判斷框。

  3、循環(huán)結(jié)構(gòu):在一些算法中,經(jīng)常會(huì)出現(xiàn)從某處開始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),反復(fù)執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)。循環(huán)結(jié)構(gòu)又稱重復(fù)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類:

  (1)、一類是當(dāng)型循環(huán)結(jié)構(gòu),如下左圖所示,它的功能是當(dāng)給定的條件P成立時(shí),執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復(fù)執(zhí)行A框,直到某一次條件P不成立為止,此時(shí)不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。

  (2)、另一類是直到型循環(huán)結(jié)構(gòu),如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時(shí)不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。

  注意:1循環(huán)結(jié)構(gòu)要在某個(gè)條件下終止循環(huán),這就需要條件結(jié)構(gòu)來(lái)判斷。因此,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu),但不允許“死循環(huán)”。

  2在循環(huán)結(jié)構(gòu)中都有一個(gè)計(jì)數(shù)變量和累加變量。計(jì)數(shù)變量用于記錄循環(huán)次數(shù),累加變量用于輸出結(jié)果 。計(jì)數(shù)變量和累加變量一般是同步執(zhí)行的,累加一次,計(jì)數(shù)一次。

  三.輸入、輸出語(yǔ)句和賦值語(yǔ)句

  四.條件語(yǔ)句

  五.循環(huán)語(yǔ)句

  六.輾轉(zhuǎn)相除法與更相減損術(shù)

  1、輾轉(zhuǎn)相除法。也叫歐幾里德算法,用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:

  (1):用較大的數(shù)m除以較小的數(shù)n得到一個(gè)商 和一個(gè)余數(shù) ;

  (2):若 =0,則n為m,n的最大公約數(shù);若 ≠0,則用除數(shù)n除以余數(shù) 得到一個(gè)商 和一個(gè)余數(shù) ;

  (3):若 =0,則 為m,n的最大公約數(shù);若 ≠0,則用除數(shù) n除以余數(shù) 得到一個(gè)商 和一個(gè)余數(shù) ;…… 依次計(jì)算直至 =0,此時(shí)所得到的 即為所求的最大公約數(shù)。

  2、更相減損術(shù)

  我國(guó)早期也有求最大公約數(shù)問題的算法,就是更相減損術(shù)。在《九章算術(shù)》中有更相減損術(shù)求最大公約數(shù)的步驟:可半者半之,不可半者,副置分母•子之?dāng)?shù),以少減多,更相減損,求其等也,以等數(shù)約之。

  翻譯為:(1):任意給出兩個(gè)正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡(jiǎn);若不是,執(zhí)行第二步。

  (2):以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個(gè)操作,直到所得的數(shù)相等為止,則這個(gè)數(shù)(等數(shù))就是所求的最大公約數(shù)。

  3、輾轉(zhuǎn)相除法與更相減損術(shù)的區(qū)別:

  (1)都是求最大公約數(shù)的方法,計(jì)算上輾轉(zhuǎn)相除法以除法為主,更相減損術(shù)以減法為主,計(jì)算次數(shù)上輾轉(zhuǎn)相除法計(jì)算次數(shù)相對(duì)較少,特別當(dāng)兩個(gè)數(shù)字大小區(qū)別較大時(shí)計(jì)算次數(shù)的區(qū)別較明顯。

  (2)從結(jié)果體現(xiàn)形式來(lái)看,輾轉(zhuǎn)相除法體現(xiàn)結(jié)果是以相除余數(shù)為0則得到,而更相減損術(shù)則以減數(shù)與差相等而得到

  七.秦九韶算法與排序

  1、秦九韶算法概念:f(x)=anxn+an-1xn-1+….+a1x+a0求值問題

  f(x)=anxn+an-1xn-1+….+a1x+a0=( anxn-1+an-1xn-2+….+a1)x+a0 =(( anxn-2+an-1xn-3+….+a2)x+a1)x+a0 =......=(...( anx+an-1)x+an-2)x+...+a1)x+a0

  求多項(xiàng)式的值時(shí),首先計(jì)算最內(nèi)層括號(hào)內(nèi)依次多項(xiàng)式的值,即v1=anx+an-1然后由內(nèi)向外逐層計(jì)算一次多項(xiàng)式的值,即

  v2=v1x+an-2 v3=v2x+an-3 ...... vn=vn-1x+a0

  這樣,把n次多項(xiàng)式的求值問題轉(zhuǎn)化成求n個(gè)一次多項(xiàng)式的值的問題。

  2、兩種排序方法:直接插入排序和冒泡排序

  1、直接插入排序

  基本思想:插入排序的思想就是讀一個(gè),排一個(gè)。將第1個(gè)數(shù)放入數(shù)組的第1個(gè)元素中,以后讀入的數(shù)與已存入數(shù)組的數(shù)進(jìn)行比較,確定它在從大到小的排列中應(yīng)處的位置.將該位置以及以后的元素向后推移一個(gè)位置,將讀入的新數(shù)填入空出的位置中.(由于算法簡(jiǎn)單,可以舉例說(shuō)明)

  2、冒泡排序

  基本思想:依次比較相鄰的兩個(gè)數(shù),把大的放前面,小的放后面.即首先比較第1個(gè)數(shù)和第2個(gè)數(shù),大數(shù)放前,小數(shù)放后.然后比較第2個(gè)數(shù)和第3個(gè)數(shù)......直到比較最后兩個(gè)數(shù).第一趟結(jié)束,最小的一定沉到最后.重復(fù)上過程,仍從第1個(gè)數(shù)開始,到最后第2個(gè)數(shù)...... 由于在排序過程中總是大數(shù)往前,小數(shù)往后,相當(dāng)氣泡上升,所以叫冒泡排序.

  八.進(jìn)位制

  概念:進(jìn)位制是一種記數(shù)方式,用有限的數(shù)字在不同的位置表示不同的數(shù)值??墒褂脭?shù)字符號(hào)的個(gè)數(shù)稱為基數(shù),基數(shù)為n,即可稱n進(jìn)位制,簡(jiǎn)稱n進(jìn)制?,F(xiàn)在最常用的是十進(jìn)制,通常使用10個(gè)阿拉伯?dāng)?shù)字0-9進(jìn)行記數(shù)。對(duì)于任何一個(gè)數(shù),我們可以用不同的進(jìn)位制來(lái)表示。比如:十進(jìn)數(shù)57,可以用二進(jìn)制表示為111001,也可以用八進(jìn)制表示為71、用十六進(jìn)制表示為39,它們所代表的數(shù)值都是一樣的。

  而表示各種進(jìn)位制數(shù)一般在數(shù)字右下腳加注來(lái)表示,如111001(2)表示二進(jìn)制數(shù),34(5)表示5進(jìn)制數(shù)。

2425167