高中數(shù)學(xué)關(guān)于充要條件的概念
高二數(shù)學(xué)中學(xué)到的充要條件是證明題的一種常考類型,下面學(xué)習(xí)啦的小編將為大家?guī)?lái)高中數(shù)學(xué)關(guān)于充要條件的概念的介紹,希望能夠幫助到大家。
高中數(shù)學(xué)關(guān)于充要條件的概念介紹
(1)先看“充分條件和必要條件”
當(dāng)命題“若p則q”為真時(shí),可表示為p => q,則我們稱p為q的充分條件,q是p的必要條件。這里由p => q,得出p為q的充分條件是容易理解的。
但為什么說(shuō)q是p的必要條件呢?
事實(shí)上,與“p => q”等價(jià)的逆否命題是“非q => 非p”。它的意思是:若q不成立,則p一定不成立。這就是說(shuō),q對(duì)于p是必不可少的,因而是必要的。
(2)再看“充要條件”
若有p =>q,同時(shí)q => p,則p既是q的充分條件,又是必要條件。簡(jiǎn)稱為p是q的充要條件。記作p<=>q
回憶一下初中學(xué)過(guò)的“等價(jià)于”這一概念;如果從命題A成立可以推出命題B成立,反過(guò)來(lái),從命題B成立也可以推出命題A成立,那么稱A等價(jià)于B,記作A<=>B。“充要條件”的含義,實(shí)際上與“等價(jià)于”的含義完全相同。也就是說(shuō),如果命題A等價(jià)于命題B,那么我們說(shuō)命題A成立的充要條件是命題B成立;同時(shí)有命題B成立的充要條件是命題A成立。
(3)定義與充要條件
數(shù)學(xué)中,只有A是B的充要條件時(shí),才用A去定義B,因此每個(gè)定義中都包含一個(gè)充要條件。如“兩組對(duì)邊分別平行的四邊形叫做平行四邊形”這一定義就是說(shuō),一個(gè)四邊形為平行四邊形的充要條件是它的兩組對(duì)邊分別平行。
顯然,一個(gè)定理如果有逆定理,那么定理、逆定理合在一起,可以用一個(gè)含有充要條件的語(yǔ)句來(lái)表示。
“充要條件”有時(shí)還可以改用“當(dāng)且僅當(dāng)”來(lái)表示,其中“當(dāng)”表示“充分”。“僅當(dāng)”表示“必要”。
(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。
高中數(shù)學(xué)數(shù)列的概念知識(shí)點(diǎn)
1.數(shù)列的定義
按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個(gè)數(shù)都叫做數(shù)列的項(xiàng).
(1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.
(2)在數(shù)列的定義中并沒(méi)有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個(gè)相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….
(4)數(shù)列的項(xiàng)與它的項(xiàng)數(shù)是不同的,數(shù)列的項(xiàng)是指這個(gè)數(shù)列中的某一個(gè)確定的數(shù),是一個(gè)函數(shù)值,也就是相當(dāng)于f(n),而項(xiàng)數(shù)是指這個(gè)數(shù)在數(shù)列中的位置序號(hào),它是自變量的值,相當(dāng)于f(n)中的n.
(5)次序?qū)τ跀?shù)列來(lái)講是十分重要的,有幾個(gè)相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個(gè)相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個(gè)數(shù)按不同的次序排列時(shí),就會(huì)得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個(gè)集合.
2.數(shù)列的分類
(1)根據(jù)數(shù)列的項(xiàng)數(shù)多少可以對(duì)數(shù)列進(jìn)行分類,分為有窮數(shù)列和無(wú)窮數(shù)列.在寫數(shù)列時(shí),對(duì)于有窮數(shù)列,要把末項(xiàng)寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無(wú)窮數(shù)列.
(2)按照項(xiàng)與項(xiàng)之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動(dòng)數(shù)列、常數(shù)列.
3.數(shù)列的通項(xiàng)公式
數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個(gè)規(guī)律通常是用式子f(n)來(lái)表示的,
這兩個(gè)通項(xiàng)公式形式上雖然不同,但表示同一個(gè)數(shù)列,正像每個(gè)函數(shù)關(guān)系不都能用解析式表達(dá)出來(lái)一樣,也不是每個(gè)數(shù)列都能寫出它的通項(xiàng)公式;有的數(shù)列雖然有通項(xiàng)公式,但在形式上,又不一定是唯一的,僅僅知道一個(gè)數(shù)列前面的有限項(xiàng),無(wú)其他說(shuō)明,數(shù)列是不能確定的,通項(xiàng)公式更非唯一.如:數(shù)列1,2,3,4,…,
由公式寫出的后續(xù)項(xiàng)就不一樣了,因此,通項(xiàng)公式的歸納不僅要看它的前幾項(xiàng),更要依據(jù)數(shù)列的構(gòu)成規(guī)律,多觀察分析,真正找到數(shù)列的內(nèi)在規(guī)律,由數(shù)列前幾項(xiàng)寫出其通項(xiàng)公式,沒(méi)有通用的方法可循.
再?gòu)?qiáng)調(diào)對(duì)于數(shù)列通項(xiàng)公式的理解注意以下幾點(diǎn):
(1)數(shù)列的通項(xiàng)公式實(shí)際上是一個(gè)以正整數(shù)集N*或它的有限子集{1,2,…,n}為定義域的函數(shù)的表達(dá)式.
(2)如果知道了數(shù)列的通項(xiàng)公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個(gè)數(shù)列的各項(xiàng);同時(shí),用數(shù)列的通項(xiàng)公式也可判斷某數(shù)是否是某數(shù)列中的一項(xiàng),如果是的話,是第幾項(xiàng).
(3)如所有的函數(shù)關(guān)系不一定都有解析式一樣,并不是所有的數(shù)列都有通項(xiàng)公式.
如2的不足近似值,精確到1,0.1,0.01,0.001,0.000 1,…所構(gòu)成的數(shù)列1,1.4,1.41,1.414,1.414 2,…就沒(méi)有通項(xiàng)公式.
(4)有的數(shù)列的通項(xiàng)公式,形式上不一定是唯一的,正如舉例中的:
(5)有些數(shù)列,只給出它的前幾項(xiàng),并沒(méi)有給出它的構(gòu)成規(guī)律,那么僅由前面幾項(xiàng)歸納出的數(shù)列通項(xiàng)公式并不唯一.
4.數(shù)列的圖象
對(duì)于數(shù)列4,5,6,7,8,9,10每一項(xiàng)的序號(hào)與這一項(xiàng)有下面的對(duì)應(yīng)關(guān)系:
序號(hào):1 2 3 4 5 6 7
項(xiàng): 4 5 6 7 8 9 10
這就是說(shuō),上面可以看成是一個(gè)序號(hào)集合到另一個(gè)數(shù)的集合的映射.因此,從映射、函數(shù)的觀點(diǎn)看,數(shù)列可以看作是一個(gè)定義域?yàn)檎疦*(或它的有限子集{1,2,3,…,n})的函數(shù),當(dāng)自變量從小到大依次取值時(shí),對(duì)應(yīng)的一列函數(shù)值.這里的函數(shù)是一種特殊的函數(shù),它的自變量只能取正整數(shù).
由于數(shù)列的項(xiàng)是函數(shù)值,序號(hào)是自變量,數(shù)列的通項(xiàng)公式也就是相應(yīng)函數(shù)和解析式.
數(shù)列是一種特殊的函數(shù),數(shù)列是可以用圖象直觀地表示的.
數(shù)列用圖象來(lái)表示,可以以序號(hào)為橫坐標(biāo),相應(yīng)的項(xiàng)為縱坐標(biāo),描點(diǎn)畫圖來(lái)表示一個(gè)數(shù)列,在畫圖時(shí),為方便起見(jiàn),在平面直角坐標(biāo)系兩條坐標(biāo)軸上取的單位長(zhǎng)度可以不同,從數(shù)列的圖象表示可以直觀地看出數(shù)列的變化情況,但不精確.
把數(shù)列與函數(shù)比較,數(shù)列是特殊的函數(shù),特殊在定義域是正整數(shù)集或由以1為首的有限連續(xù)正整數(shù)組成的集合,其圖象是無(wú)限個(gè)或有限個(gè)孤立的點(diǎn).
5.遞推數(shù)列
一堆鋼管,共堆放了七層,自上而下各層的鋼管數(shù)構(gòu)成一個(gè)數(shù)列:4,5,6,7,8,9,10.①
數(shù)列①還可以用如下方法給出:自上而下第一層的鋼管數(shù)是4,以下每一層的鋼管數(shù)都比上層的鋼管數(shù)多1,
猜你感興趣:
1.2017高考數(shù)學(xué)核心考點(diǎn)
2.高考數(shù)學(xué)重點(diǎn)難點(diǎn)詳解
3.2016年高中數(shù)學(xué)復(fù)習(xí)考試大綱
4.2017高考數(shù)學(xué)易錯(cuò)點(diǎn)集錦