江蘇高考數(shù)學(xué)必背公式(3)
江蘇高考數(shù)學(xué)必背公式
高考數(shù)學(xué)必背公式(六)
1 過兩點(diǎn)有且只有一條直線
2 兩點(diǎn)之間線段最短
3 同角或等角的補(bǔ)角相等
4 同角或等角的余角相等
5 過一點(diǎn)有且只有一條直線和已知直線垂直
6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7 平行公理 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內(nèi)錯角相等,兩直線平行
11 同旁內(nèi)角互補(bǔ),兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內(nèi)錯角相等
14 兩直線平行,同旁內(nèi)角互補(bǔ)
15 定理 三角形兩邊的和大于第三邊
16 推論 三角形兩邊的差小于第三邊
17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
21 全等三角形的對應(yīng)邊、對應(yīng)角相等
22邊角邊公理(sas) 有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等
23 角邊角公理( asa)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等
24 推論(aas) 有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等
25 邊邊邊公理(sss) 有三邊對應(yīng)相等的兩個三角形全等
26 斜邊、直角邊公理(hl) 有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等
27 定理1 在角的平分線上的點(diǎn)到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點(diǎn),在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,并且每一個角都等于60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等于60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38 直角三角形斜邊上的中線等于斜邊上的一半
39 定理 線段垂直平分線上的點(diǎn)和這條線段兩個端點(diǎn)的距離相等
40 逆定理 和一條線段兩個端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42 定理1 關(guān)于某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線 44定理3 兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上
45逆定理 如果兩個圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個三角形是直角三角形
48定理 四邊形的內(nèi)角和等于360°
49四邊形的外角和等于360°
50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°
51推論 任意多邊的外角和等于360°
52平行四邊形性質(zhì)定理1 平行四邊形的對角相等
53平行四邊形性質(zhì)定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質(zhì)定理1 矩形的四個角都是直角
61矩形性質(zhì)定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質(zhì)定理1 菱形的四條邊都相等
65菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即s=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質(zhì)定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71定理1 關(guān)于中心對稱的兩個圖形是全等的
72定理2 關(guān)于中心對稱的兩個圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分
73逆定理 如果兩個圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個圖形關(guān)于這一點(diǎn)對稱
74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79 推論1 經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
80 推論2 經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊
81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半
82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 l=(a+b)÷2 s=l×h
83 (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d
84 (2)合比性質(zhì) 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性質(zhì) 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應(yīng)線段成比例
87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例
90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應(yīng)相等,兩三角形相似(asa)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(sas)
94 判定定理3 三邊對應(yīng)成比例,兩三角形相似(sss)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似
96 性質(zhì)定理1 相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比
97 性質(zhì)定理2 相似三角形周長的比等于相似比
98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方
99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等
于它的余角的正弦值
100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
104同圓或等圓的半徑相等
105到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓
106和已知線段兩個端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線
107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個角的平分線
108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線
109定理 不在同一直線上的三點(diǎn)確定一個圓。
110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
?、谙业拇怪逼椒志€經(jīng)過圓心,并且平分弦所對的兩條弧
?、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
116定理 一條弧所對的圓周角等于它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑
119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
120定理 圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角
121①直線l和⊙o相交 d
②直線l和⊙o相切 d=r
?、壑本€l和⊙o相離 d>r
122切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
123切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑
124推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
125推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
126切線長定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理 弦切角等于它所夾的弧對的圓周角
129推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
130相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等
131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的
兩條線段的比例中項(xiàng)
132切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割
線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)
133推論 從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等
134如果兩個圓相切,那么切點(diǎn)一定在連心線上
135①兩圓外離 d>r+r ②兩圓外切 d=r+r
③兩圓相交 r-rr)
?、軆蓤A內(nèi)切 d=r-r(r>r) ⑤兩圓內(nèi)含dr)
136定理 相交兩圓的連心線垂直平分兩圓的公共弦
137定理 把圓分成n(n≥3):
?、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個圓的內(nèi)接正n邊形
?、平?jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個圓的外切正n邊形
138定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
139正n邊形的每個內(nèi)角都等于(n-2)×180°/n
140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141正n邊形的面積sn=pnrn/2 p表示正n邊形的周長
142正三角形面積√3a/4 a表示邊長
143如果在一個頂點(diǎn)周圍有k個正n邊形的角,由于這些角的和應(yīng)為
360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144弧長計算公式:l=nπr/180
145扇形面積公式:s扇形=nπr2/360=lr/2
146內(nèi)公切線長= d-(r-r) 外公切線長= d-(r+r)
147等腰三角形的兩個底腳相等
148等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合
149如果一個三角形的兩個角相等,那么這兩個角所對的邊也相等
150三條邊都相等的三角形叫做等邊三角
高考數(shù)學(xué)必背公式(七)
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理
判別式
b2-4ac=0 注:方程有兩個相等的實(shí)根
b2-4ac>0 注:方程有兩個不等的實(shí)根
b2-4ac<0 注:方程沒有實(shí)根,有共軛復(fù)數(shù)根
三角函數(shù)公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c'*h
正棱錐側(cè)面積 S=1/2c*h' 正棱臺側(cè)面積 S=1/2(c+c')h'
圓臺側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
猜你感興趣: