特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高三學(xué)習(xí)方法 > 高三數(shù)學(xué) > 高三數(shù)學(xué)必修一知識點

高三數(shù)學(xué)必修一知識點

時間: 文娟843 分享

高三數(shù)學(xué)必修一知識點

  學(xué)習(xí)數(shù)學(xué)需要講究方法和技巧,更要學(xué)會對知識點進行歸納整理。下面是學(xué)習(xí)啦小編為大家整理的高三數(shù)學(xué)必修一知識點,希望對大家有所幫助!

  高三數(shù)學(xué)必修一知識點總結(jié):第一章 集合與函數(shù)概念

  一、集合有關(guān)概念

  1. 集合的含義

  2. 集合的中元素的三個特性:

  (1) 元素的確定性如:世界上最高的山

  (2) 元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

  (3) 元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個集合

  3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  (1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (2) 集合的表示方法:列舉法與描述法。

  u 注意:常用數(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集) 記作:N

  正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R

  1) 列舉法:{a,b,c……}

  2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{xÎR| x-3>2} ,{x| x-3>2}

  3) 語言描述法:例:{不是直角三角形的三角形}

  4) Venn圖:

  4、集合的分類:

  (1) 有限集 含有有限個元素的集合

  (2) 無限集 含有無限個元素的集合

  (3) 空集 不含任何元素的集合  例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之: 集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)

  實例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

  即:① 任何一個集合是它本身的子集。AÍA

  ②真子集:如果AÍB,且A¹ B那就說集合A是集合B的真子集,記作AB(或BA)

  ③如果 AÍB, BÍC ,那么 AÍC

 ?、?如果AÍB 同時 BÍA 那么A=B

  3. 不含任何元素的集合叫做空集,記為Φ

  規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  u 有n個元素的集合,含有2n個子集,2n-1個真子

  三、集合的運算

運算類型

交 集

并 集

補 集

定 義

由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB ={x|xA,或xB}).

設(shè)S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

記作,即

CSA=

質(zhì)

AA=A

AΦ=Φ

AB=BA

ABA

ABB

AA=A

AΦ=A

AB=BA

ABA

ABB

(CuA) (CuB)

= Cu(AB)

(CuA) (CuB)

= Cu(AB)

A(CuA)=U

A(CuA)= Φ.

  例題:

  1.下列四組對象,能構(gòu)成集合的是 ( )

  A某班所有高個子的學(xué)生 B著名的藝術(shù)家 C一切很大的書 D 倒數(shù)等于它自身的實數(shù)

  2.集合{a,b,c }的真子集共有 個

  3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},則M與N的關(guān)系是 .

  4.設(shè)集合A=,B=,若AB,則的取值范圍是

  5.50名學(xué)生做的物理、化學(xué)兩種實驗,已知物理實驗做得正確得有40人,化學(xué)實驗做得正確得有31人,

  兩種實驗都做錯得有4人,則這兩種實驗都做對的有 人。

  6. 用描述法表示圖中陰影部分的點(含邊界上的點)組成的集合M= .

  7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值

  二、函數(shù)的有關(guān)概念

  1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.

  注意:

  1.定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。

  求函數(shù)的定義域時列不等式組的主要依據(jù)是:

  (1)分式的分母不等于零;

  (2)偶次方根的被開方數(shù)不小于零;

  (3)對數(shù)式的真數(shù)必須大于零;

  (4)指數(shù)、對數(shù)式的底必須大于零且不等于1.

  (5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

  (6)指數(shù)為零底不可以等于零,

  (7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.

  u 相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致 (兩點必須同時具備)

  (見課本21頁相關(guān)例2)

  2.值域 : 先考慮其定義域

  (1)觀察法

  (2)配方法

  (3)代換法

  3. 函數(shù)圖象知識歸納

  (1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(x,y),均在C上 .

  (2) 畫法

  A、 描點法:

  B、 圖象變換法

  常用變換方法有三種

  1) 平移變換

  2) 伸縮變換

  3) 對稱變換

  4.區(qū)間的概念

  (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

  (2)無窮區(qū)間

  (3)區(qū)間的數(shù)軸表示.

  5.映射

  一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從集合A到集合B的一個映射。記作“f(對應(yīng)關(guān)系):A(原象)B(象)”

  對于映射f:A→B來說,則應(yīng)滿足:

  (1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;

  (2)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個;

  (3)不要求集合B中的每一個元素在集合A中都有原象。

  6.分段函數(shù)

  (1)在定義域的不同部分上有不同的解析表達式的函數(shù)。

  (2)各部分的自變量的取值情況.

  (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

  補充:復(fù)合函數(shù)

  如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復(fù)合函數(shù)。

  二.函數(shù)的性質(zhì)

  1.函數(shù)的單調(diào)性(局部性質(zhì))

  (1)增函數(shù)

  設(shè)函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當(dāng)x1<x2時,都有f(x1)<f(x2),那么就說f(x)在區(qū)間D上是增函數(shù).區(qū)間D稱為y=f(x)的單調(diào)增區(qū)間.

  如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當(dāng)x1<x2 時,都有f(x1)>f(x2),那么就說f(x)在這個區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.

  注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);

  (2) 圖象的特點

  如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

  (3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

  (A) 定義法:

  1 任取x1,x2∈D,且x1<x2;

  2 作差f(x1)-f(x2);

  3 變形(通常是因式分解和配方);

  4 定號(即判斷差f(x1)-f(x2)的正負(fù));

  5 下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).

  (B)圖象法(從圖象上看升降)

  (C)復(fù)合函數(shù)的單調(diào)性

  復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”

  注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

  8.函數(shù)的奇偶性(整體性質(zhì))

  (1)偶函數(shù)

  一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

  (2).奇函數(shù)

  一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

  (3)具有奇偶性的函數(shù)的圖象的特征

  偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.

  利用定義判斷函數(shù)奇偶性的步驟:

  1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點對稱;

  2確定f(-x)與f(x)的關(guān)系;

  3作出相應(yīng)結(jié)論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù).

  注意:函數(shù)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點對稱,若不對稱則函數(shù)是非奇非偶函數(shù).若對稱,(1)再根據(jù)定義判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數(shù)的圖象判定 .

  9、函數(shù)的解析表達式

  (1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關(guān)系時,一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域.

  (2)求函數(shù)的解析式的主要方法有:

  1) 湊配法

  2) 待定系數(shù)法

  3) 換元法

  4) 消參法

  10.函數(shù)最大(小)值(定義見課本p36頁)

  1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值

  2 利用圖象求函數(shù)的最大(小)值

  3 利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:

  如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);

  如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

  例題:

  1.求下列函數(shù)的定義域:

  ⑴ ⑵

  2.設(shè)函數(shù)的定義域為,則函數(shù)的定義域為_ _

  3.若函數(shù)的定義域為,則函數(shù)的定義域是

  4.函數(shù) ,若,則=

  5.求下列函數(shù)的值域:

 ?、?⑵

  (3) (4)

  6.已知函數(shù),求函數(shù),的解析式

  7.已知函數(shù)滿足,則= 。

  8.設(shè)是R上的奇函數(shù),且當(dāng)時,,則當(dāng)時=

  在R上的解析式為

  9.求下列函數(shù)的單調(diào)區(qū)間:

 ?、?⑵ ⑶

  10.判斷函數(shù)的單調(diào)性并證明你的結(jié)論.

  11.設(shè)函數(shù)判斷它的奇偶性并且求證:.

1448499