高中數(shù)學得分的技巧和注意的方面
想要學好數(shù)學學生需要注意的方面比較的多,下面學習啦的小編將為大家?guī)砀咧袛?shù)學得分的技巧介紹,希望能夠幫助到大家。
高中數(shù)學得分的技巧
1.特值檢驗法
對于具有一般性的數(shù)學問題,我們在解題過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達到去偽存真的目的。
例:△ABC的三個頂點在橢圓4x2+5y2=6上,其中A、B兩點關(guān)于原點O對稱,設(shè)直線AC的斜率k1,直線BC的斜率k2,則k1k2的值為
A.-5/4
B.-4/5
C.4/5
D.2√5/5
解 析:因為要求k1k2的值,由題干暗示可知道k1k2的值為定值。題中沒有給定A、B、C三點的具體位置,因為是選擇題,我們沒有必要去求解,通過簡單的 畫圖,就可取最容易計算的值,不妨令A、B分別為橢圓的長軸上的兩個頂點,C為橢圓的短軸上的一個頂點,這樣直接確認交點,可將問題簡單化,由此可得,故 選B。
2.極端性原則
將所要研究的問題向極端狀態(tài)進行分析,使因果關(guān)系變得更加明顯,從而達到迅速解決問題的目的。極端性多數(shù)應(yīng)用在求極值、取值范圍、解析幾何上面,很多計算步驟繁瑣、計算量大的題,一但采用極端性去分析,那么就能瞬間解決問題。
3.剔除法
利用已知條件和選擇支所提供的信息,從四個選項中剔除掉三個錯誤的答案,從而達到正確選擇的目的。這是一種常用的方法,尤其是答案為定值,或者有數(shù)值范圍時,取特殊點代入驗證即可排除。
4.數(shù)形結(jié)合法
由題目條件,作出符合題意的圖形或圖象,借助圖形或圖象的直觀性,經(jīng)過簡單的推理或計算,從而得出答案的方法。數(shù)形結(jié)合的好處就是直觀,甚至可以用量角尺直接量出結(jié)果來。
5.遞推歸納法
通過題目條件進行推理,尋找規(guī)律,從而歸納出正確答案的方法。
6.順推破解法
利用數(shù)學定理、公式、法則、定義和題意,通過直接演算推理得出結(jié)果的方法。
7.逆推驗證法
將選擇支代入題干進行驗證,從而否定錯誤選擇支而得出正確選擇支的方法。
8.正難則反法
從題的正面解決比較難時,可從選擇支出發(fā)逐步逆推找出符合條件的結(jié)論,或從反面出發(fā)得出結(jié)論。
9.特征分析法
對題設(shè)和選擇支的特點進行分析,發(fā)現(xiàn)規(guī)律,歸納得出正確判斷的方法。例:256-1可能被120和130之間的兩個數(shù)所整除,這兩個數(shù)是:
A.123,125
B.125,127
C.127,129
D.125,127
解析:初中的平方差公式,由256-1=(228+1)(228-1)=(228+1)(214+1)(27+1)(27-1)=(228+1)(214+1)·129·127,故選C。
10.估值選擇法
有些問題,由于題目條件限制,無法(或沒有必要)進行精準的運算和判斷,此時只能借助估算,通過觀察、分析、比較、推算,從面得出正確判斷的方法。
高中數(shù)學學好要注意的方面
1.核心概念
注重對概念的考察是北京高考數(shù)學試題的特色。依據(jù)考試說明及試題特點,以下幾個方面的概念是復習中應(yīng)特別關(guān)注的:
(1)充要條件;
(2)函數(shù):函數(shù)的本質(zhì)、表示、函數(shù)的性質(zhì)(主要是單調(diào)性)、函數(shù)觀點等;
(3)數(shù)列:函數(shù)的觀點(定義域可數(shù)的函數(shù))、歸納地推雨歸納猜想、等差(比)數(shù)列的概念;
(4)概率與統(tǒng)計:隨機事件、加法及乘法公式、古典(幾何)概型、用樣本估計總體等;
(5)幾何有關(guān)的概念:三視圖、空間角、線性規(guī)劃、直線與圓、圓錐曲線的定義和性質(zhì)等。
2.核心思維
(1)極端原理;
(2)運動變化的觀點;
(3)試驗、猜想;
(4)構(gòu)造;
(5)正難則反等。
3.核心方法
(1)配方法、待定系數(shù)法、換元法、作函數(shù)圖象的方法、求最大(小)值得方法;
(2)正弦型函數(shù)的圖像和性質(zhì)、正余弦定理的應(yīng)用;
(3)空間幾何元素平行垂直的證明、利用空間向量求空間角的方法;
(4)概率的求法、用樣本估計總體的方法;??
(5)導數(shù)的應(yīng)用、函數(shù)的應(yīng)用:解決方程(零點)、不等式問題的方法;
(6)解析法解決圓錐曲線的問題。
高中數(shù)學學習的技巧
1.學習被動。許多同學進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學習主動權(quán),沒有真正理解所學內(nèi)容。在初中的數(shù)學教學中,教師講解詳細,常把許多問題的解決建立為固定的思維模式,而且各類題型反復練習,學生漸漸養(yǎng)成了“依葫蘆畫瓢”的抄錄式的學習方法。而高中數(shù)學要求學生勤于思考,善于思考,掌握數(shù)學思想方法,善于歸納總結(jié)規(guī)律,在思維的靈活性、可延伸性、創(chuàng)造性方面提出了較高的要求。但學生的思維能力的發(fā)展和思維方式的轉(zhuǎn)換有一個循序漸進的過程,這就給高一數(shù)學的學習形成了思維障礙。
2.學不得法。老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
3.基礎(chǔ)重視不夠。知識是能力的基礎(chǔ),要切實抓好基礎(chǔ)知識的學習。數(shù)學基礎(chǔ)知識學習包括概念學習、定理公式學習以及解題學習三個方面,一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經(jīng)常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。
4.進一步學習條件不具備。高中數(shù)學與初中數(shù)學相比,知識的深度、廣度,能力要求都是一次飛躍,這就要求必須掌握基礎(chǔ)知識與技能為進一步學習做好準備。高中數(shù)學很多地方難度大、方法新、分析能力要求高,如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等??陀^上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,分化是不可避免的。
猜你感興趣: