高中數(shù)學(xué)必修4平面向量知識點總結(jié)
高中數(shù)學(xué)必修4平面向量知識點總結(jié)
平面向量是高中數(shù)學(xué)中基本內(nèi)容,必修四課本的難點,有哪些知識點需要學(xué)習(xí)?下面是學(xué)習(xí)啦小編給大家?guī)淼母咧袛?shù)學(xué)必修4平面向量知識點,希望對你有幫助。
高中數(shù)學(xué)必修4平面向量知識點
坐標(biāo)表示法
平面向量的坐標(biāo)表示:在直角坐標(biāo)系中,分別取與x軸、y軸方向相同的兩個單位向量 作為基底。由平面向量的基本定理知,該平面內(nèi)的任一向量可表示成 ,由于與數(shù)對(x,y)是一一對應(yīng)的,因此把(x,y)叫做向量的坐標(biāo),記作=(x,y),其中x叫作在x軸上的坐標(biāo),y叫做在y軸上的坐標(biāo)。
來表示平面內(nèi)的各個方向 在數(shù)學(xué)中,我們通常用點表示位置,用射線表示方向.在平面內(nèi),從任一點出發(fā)的所有射線,可以分別用
向量的表示向量常用一條有向線段來表示,有向線段的長度表示向量的大小,箭頭所指的方向表示向量的方向.向量也可用字母a①、b、c等表示,或用表示向量的有向線段的起點和終點字母表示.
向量 的大小,也就是向量 的長度(或稱模),記作|a|長度為0的向量叫做零向量,記作0.長度等于1個單位長度的向量,叫做單位向量.
方向相同或相反的非零向量叫做平行向量.向量a、b、c平行,記作a∥b∥c.0向量長度為零,是起點與終點重合的向量,其方向不確定,我們規(guī)定0與任一向量平行.
長度相等且方向相同的向量叫做相等向量.向量a與b相等,記作a=b.零向量與零向量相等.任意兩個相等的非零向量,都可用同一條有向線段來表示,并且與有向線段的起點無關(guān).
向量的運算
1、向量的加法:
AB+BC=AC
設(shè)a=(x,y) b=(x',y')
則a+b=(x+x',y+y')
向量的加法滿足平行四邊形法則和三角形法則。
向量加法的性質(zhì):
交換律:
a+b=b+a
結(jié)合律:
(a+b)+c=a+(b+c)
a+0=0+a=a
2、向量的減法
AB-AC=CB
a-b=(x-x',y-y')
若a//b
則a=eb
則xy`-x`y=0
若a垂直b
則ab=0
則xx`+yy`=0
3、向量的乘法
設(shè)a=(x,y) b=(x',y')
a·b(點積)=x·x'+y·y'=|a|·|b|*cos夾角
4、向量有關(guān)概念:
(1)向量的概念:既有大小又有方向的量,注意向量和數(shù)量的區(qū)別。向量常用有向線段來表示,注意不能說向量就是有向線段,為什么?(向量可以平移)。如已知A(1,2),B(4,2),則把向量 按向量 =(-1,3)平移后得到的向量是_____(答:(3,0))
(2)零向量:長度為0的向量叫零向量,記作: ,注意零向量的方向是任意的;
(3)單位向量:長度為一個單位長度的向量叫做單位向量(與 共線的單位向量是 );
(4)相等向量:長度相等且方向相同的兩個向量叫相等向量,相等向量有傳遞性;
(5)平行向量(也叫共線向量):方向相同或相反的非零向量 、 叫做平行向量,記作: ‖ ,規(guī)定零向量和任何向量平行。提醒:①相等向量一定是共線向量,但共線向量不一定相等;②兩個向量平行與與兩條直線平行是不同的兩個概念:兩個向量平行包含兩個向量共線, 但兩條直線平行不包含兩條直線重合;③平行向量無傳遞性!(因為有 );④三點 共線。
高中數(shù)學(xué)必修4平面向量例題
1.已知點A(1,1),B(-1,5)及AC向量=1/2AB向量,AD向量=2AB向量,AE向量=-1/2AB向量,求點C,D,E的坐標(biāo)。
設(shè)C點(x,y),則AB=(-2,4),AC=(x-1,y-1).
由AC=1/2AB得:
x-1=1/2×(-2)=-1,
y-1=1/2×4=2
設(shè)D點(x,y),則AD=(x-1,y-1).
由AD=2AB得:
x-1=2×(-2)=-4,
y-1=2×4=8
設(shè)E點(x,y),則AE=(x-1,y-1).
由AE=-1/2AB得: 所以,x=-3,y=9,所以點C的坐標(biāo)是(-3,9)所以,x=0,y=3,所以點C的坐標(biāo)是(0,3)
x-1=-1/2×(-2)=1,
y-1=-1/2×4=-2
所以,x=2,y=-1,所以點C的坐標(biāo)是(2,-1)
高中數(shù)學(xué)學(xué)習(xí)方法
課內(nèi)重視聽講,課后及時復(fù)習(xí)。
新知識的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進行,所以要特點重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時要緊跟老師的思路,積極展開思維預(yù)測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識和基本技能的學(xué)習(xí),課后要及時復(fù)習(xí)不留疑點。首先要在做各種習(xí)題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,應(yīng)盡量回憶而不采用不清楚立即翻書之舉。認(rèn)真獨立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對于有些題目由于自己的思路不清,一時難以解出,應(yīng)讓自己冷靜下來認(rèn)真分析題目,盡量自己解決。在每個階段的學(xué)習(xí)中要進行整理和歸納總結(jié),把知識的點、線、面結(jié)合起來交織成知識網(wǎng)絡(luò),納入自己的知識體系。
適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。
要想學(xué)好數(shù)學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態(tài),在考試中能運用自如。實踐證明:越到關(guān)鍵時候,你所表現(xiàn)的解題習(xí)慣與平時練習(xí)無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習(xí)慣是非常重要的。
調(diào)整心態(tài),正確對待考試。
首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠(yuǎn)鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎(chǔ)題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會嘗試得分,使自己的水平正常甚至超常發(fā)揮。
看了<高中數(shù)學(xué)必修4平面向量知識點總結(jié)>的人還看了:
1.高一數(shù)學(xué)必修4平面向量知識點總結(jié)
3.數(shù)學(xué)必修4平面向量公式總結(jié)
4.高一數(shù)學(xué)平面向量知識點總結(jié)