高一數(shù)學(xué)必修2重點知識歸納基礎(chǔ)
高中數(shù)學(xué)知識比較多,高一數(shù)學(xué)必修二需要記憶的知識點原理也很多,所以要加強對數(shù)學(xué)的學(xué)習(xí)。下面就讓學(xué)習(xí)啦小編給大家分享一些高一數(shù)學(xué)必修2重點知識歸納吧,希望能對你有幫助!
高一數(shù)學(xué)必修2重點知識歸納篇一
公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線上的所有的點都在這個平面內(nèi)。公理2:如果兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線。公理3:過不在同一條直線上的三個點,有且只有一個平面。
推論1:經(jīng)過一條直線和這條直線外一點,有且只有一個平面。
推論2:經(jīng)過兩條相交直線,有且只有一個平面。
推論3:經(jīng)過兩條平行直線,有且只有一個平面。
公理4:平行于同一條直線的兩條直線互相平行。
等角定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等。
高一數(shù)學(xué)必修2重點知識歸納篇二
1、按是否共面可分為兩類:
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內(nèi)一點與平面外一點的直線,與平面內(nèi)不經(jīng)過該點的直線是異面直線。
兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法
兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法
2、若從有無公共點的角度看可分為兩類:
(1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面
直線和平面的位置關(guān)系:
直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
?、僦本€在平面內(nèi)——有無數(shù)個公共點
②直線和平面相交——有且只有一個公共點
直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。
空間向量法(找平面的法向量)
規(guī)定:a、直線與平面垂直時,所成的角為直角,b、直線與平面平行或在平面內(nèi),所成的角為0°角
由此得直線和平面所成角的取值范圍為[0°,90°]
最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角
三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直
直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。
直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點
直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。
直線和平面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。
高一數(shù)學(xué)必修2重點知識歸納篇三
(1)兩個平面互相平行的定義:空間兩平面沒有公共點
(2)兩個平面的位置關(guān)系:
兩個平面平行-----沒有公共點;兩個平面相交-----有一條公共直線。
a、平行
兩個平面平行的判定定理:如果一個平面內(nèi)有兩條相交直線都平行于另一個平面,那么這兩個平面平行。
兩個平面平行的性質(zhì)定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。b、相交
二面角
(1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
(2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
高一數(shù)學(xué)必修二知識點總結(jié):兩平面垂直
兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥
兩平面垂直的判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直
兩個平面垂直的性質(zhì)定理:如果兩個平面互相垂直,那么在一個平
二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關(guān)系)
看了高一數(shù)學(xué)必修2重點知識歸納的人還看:
3.2017高二數(shù)學(xué)必修二知識點總結(jié)