中考數(shù)學(xué)壓軸題解題思路分享及填空題解題技巧分享
初中的數(shù)學(xué)是不是讓你抓破腦袋?有哪些好的數(shù)學(xué)學(xué)習(xí)方法呢?以下是小編給大家?guī)淼闹锌紨?shù)學(xué)壓軸題解題思路分享及填空題解題技巧分享,僅供考生參考,歡迎大家閱讀!
中考數(shù)學(xué)填空題解題技巧分享
一、直接法
這是解填空題的基本方法,它是直接從題設(shè)條件出發(fā)、利用定義、定理、性質(zhì)、公式等知識,通過變形、推理、運算等過程,直接得到結(jié)果。它是解填空題的最基本、最常用的方法。使用直接法解填空題,要善于通過現(xiàn)象看本質(zhì),熟練應(yīng)用解方程和解不等式的方法,自覺地、有意識地采取靈活、簡捷的解法。
二、特殊化法
當(dāng)填空題的結(jié)論唯一或題設(shè)條件中提供的信息暗示答案是一個定值時,而已知條件中含有某些不確定的量,可以將題中變化的不定量選取一些符合條件的恰當(dāng)特殊值(或特殊函數(shù),或特殊角,圖形特殊位置,特殊點,特殊方程,特殊模型等)進行處理,從而得出探求的結(jié)論。這樣可大大地簡化推理、論證的過程。
三、數(shù)形結(jié)合法
"數(shù)缺形時少直觀,形缺數(shù)時難入微。"數(shù)學(xué)中大量數(shù)的問題后面都隱含著形的信息,圖形的特征上也體現(xiàn)著數(shù)的關(guān)系。我們要將抽象、復(fù)雜的數(shù)量關(guān)系,通過形的形象、直觀揭示出來,以達到"形幫數(shù)"的目的;同時我們又要運用數(shù)的規(guī)律、數(shù)值的計算,來尋找處理形的方法,來達到"數(shù)促形"的目的。對于一些含有幾何背景的填空題,若能數(shù)中思形,以形助數(shù),則往往可以簡捷地解決問題,得出正確的結(jié)果。
四、等價轉(zhuǎn)化法
通過"化復(fù)雜為簡單、化陌生為熟悉",將問題等價地轉(zhuǎn)化成便于解決的問題,從而得出正確的結(jié)果。
中考數(shù)學(xué)壓軸題解題思路大分享
1、以坐標(biāo)系為橋梁,運用數(shù)形結(jié)合思想
縱觀最近幾年各地的中考壓軸題,絕大部分都是與坐標(biāo)系有關(guān)的,其特點是通過建立點與數(shù)即坐標(biāo)之間的對應(yīng)關(guān)系,一方面可用代數(shù)方法研究幾何圖形的性質(zhì),另一方面又可借助幾何直觀,得到某些代數(shù)問題的解答。
2、以直線或拋物線知識為載體,運用函數(shù)與方程思想
直線與拋物線是初中數(shù)學(xué)中的兩類重要函數(shù),即一次函數(shù)與二次函數(shù)所表示的圖形。因此,無論是求其解析式還是研究其性質(zhì),都離不開函數(shù)與方程的思想。例如函數(shù)解析式的確定,往往需要根據(jù)已知條件列方程或方程組并解之而得。
3、利用條件或結(jié)論的多變性,運用分類討論的思想
分類討論思想可用來檢測學(xué)生思維的準(zhǔn)確性與嚴(yán)密性,常常通過條件的多變性或結(jié)論的不確定性來進行考察,有些問題,如果不注意對各種情況分類討論,就有可能造成錯解或漏解,縱觀近幾年的中考壓軸題分類討論思想解題已成為新的熱點。