高三數(shù)學(xué)的必備知識(shí)點(diǎn)總結(jié)
高三數(shù)學(xué)的必備知識(shí)點(diǎn)總結(jié)
高三的同學(xué)們,高考在即。數(shù)學(xué)的必備知識(shí)點(diǎn)都掌握了嗎?下面由學(xué)習(xí)啦小編為大家提供關(guān)于高三數(shù)學(xué)的必備知識(shí)點(diǎn)總結(jié),希望對(duì)大家有幫助!
高三數(shù)學(xué)的必備知識(shí)點(diǎn)
1、遺忘空集致誤
由于空集是任何非空集合的真子集,因此B=?時(shí)也滿足B?A。解含有參數(shù)的集合問題時(shí),要特別注意當(dāng)參數(shù)在某個(gè)范圍內(nèi)取值時(shí)所給的集合可能是空集這種情況。
2、忽視集合元素的三性致誤
集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對(duì)解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對(duì)字母參數(shù)的一些要求。
3、混淆命題的否定與否命題
命題的“否定”與命題的“否命題”是兩個(gè)不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對(duì)“若p,則q”形式的命題而言,既要否定條件也要否定結(jié)論。
4、充分條件、必要條件顛倒致誤
對(duì)于兩個(gè)條件A,B,如果A?B成立,則A是B的充分條件,B是A的必要條件;如果B?A成立,則A是B的必要條件,B是A的充分條件;如果A?B,則A,B互為充分必要條件。解題時(shí)最容易出錯(cuò)的就是顛倒了充分性與必要性,所以在解決這類問題時(shí)一定要根據(jù)充分條件和必要條件的概念作出準(zhǔn)確的判斷。
5、“或”“且”“非”理解不準(zhǔn)致誤
命題p∨q真?p真或q真,命題p∨q假?p假且q假(概括為一真即真);命題p∧q真?p真且q真,命題p∧q假?p假或q假(概括為一假即假);綈p真?p假,綈p假?p真(概括為一真一假)。求參數(shù)取值范圍的題目,也可以把“或”“且”“非”與集合的“并”“交”“補(bǔ)”對(duì)應(yīng)起來進(jìn)行理解,通過集合的運(yùn)算求解。
6、函數(shù)的單調(diào)區(qū)間理解不準(zhǔn)致誤
在研究函數(shù)問題時(shí)要時(shí)時(shí)刻刻想到“函數(shù)的圖像”,學(xué)會(huì)從函數(shù)圖像上去分析問題、尋找解決問題的方法。對(duì)于函數(shù)的幾個(gè)不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。
7、判斷函數(shù)奇偶性忽略定義域致誤
判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶函數(shù)。
8、函數(shù)零點(diǎn)定理使用不當(dāng)致誤
如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),但f(a)f(b)>0時(shí),不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點(diǎn)。函數(shù)的零點(diǎn)有“變號(hào)零點(diǎn)”和“不變號(hào)零點(diǎn)”,對(duì)于“不變號(hào)零點(diǎn)”函數(shù)的零點(diǎn)定理是“無能為力”的,在解決函數(shù)的零點(diǎn)問題時(shí)要注意這個(gè)問題。
9、三角函數(shù)的單調(diào)性判斷致誤
對(duì)于函數(shù)y=Asin(ωx+φ)的單調(diào)性,當(dāng)ω>0時(shí),由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當(dāng)ω<0時(shí),內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時(shí)該函數(shù)的單調(diào)性和函數(shù)y=sinx的單調(diào)性相反,就不能再按照函數(shù)y=sinx的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決。對(duì)于帶有絕對(duì)值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進(jìn)行判斷。
10、忽視零向量致誤
零向量是向量中最特殊的向量,規(guī)定零向量的長(zhǎng)度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實(shí)數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會(huì)出錯(cuò),考生應(yīng)給予足夠的重視。
11、向量夾角范圍不清致誤
解題時(shí)要全面考慮問題。數(shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時(shí)把這些因素考慮到,是解題成功的關(guān)鍵,如當(dāng)a·b<0時(shí),a與b的夾角不一定為鈍角,要注意θ=π的情況。
12、an與Sn關(guān)系不清致誤
在數(shù)列問題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在下列關(guān)系:an=S1,n=1,Sn-Sn-1,n≥2。這個(gè)關(guān)系對(duì)任意數(shù)列都是成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n≥2時(shí)這個(gè)關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯(cuò)的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn)。
13、對(duì)數(shù)列的定義、性質(zhì)理解錯(cuò)誤
等差數(shù)列的前n項(xiàng)和在公差不為零時(shí)是關(guān)于n的常數(shù)項(xiàng)為零的二次函數(shù);一般地,有結(jié)論“若數(shù)列{an}的前n項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數(shù)列。
14、數(shù)列中的最值錯(cuò)誤
數(shù)列問題中其通項(xiàng)公式、前n項(xiàng)和公式都是關(guān)于正整數(shù)n的函數(shù),要善于從函數(shù)的觀點(diǎn)認(rèn)識(shí)和理解數(shù)列問題。數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系是高考的命題重點(diǎn),解題時(shí)要注意把n=1和n≥2分開討論,再看能不能統(tǒng)一。在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點(diǎn)要根據(jù)正整數(shù)距離二次函數(shù)的對(duì)稱軸的遠(yuǎn)近而定。
15、錯(cuò)位相減求和項(xiàng)處理不當(dāng)致誤
錯(cuò)位相減求和法的適用條件:數(shù)列是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)的乘積所組成的,求其前n項(xiàng)和。基本方法是設(shè)這個(gè)和式為Sn,在這個(gè)和式兩端同時(shí)乘以等比數(shù)列的公比得到另一個(gè)和式,這兩個(gè)和式錯(cuò)一位相減,就把問題轉(zhuǎn)化為以求一個(gè)等比數(shù)列的前n項(xiàng)和或前n-1項(xiàng)和為主的求和問題.這里最容易出現(xiàn)問題的就是錯(cuò)位相減后對(duì)剩余項(xiàng)的處理。
16、不等式性質(zhì)應(yīng)用不當(dāng)致誤
在使用不等式的基本性質(zhì)進(jìn)行推理論證時(shí)一定要準(zhǔn)確,特別是不等式兩端同時(shí)乘以或同時(shí)除以一個(gè)數(shù)式、兩個(gè)不等式相乘、一個(gè)不等式兩端同時(shí)n次方時(shí),一定要注意使其能夠這樣做的條件,如果忽視了不等式性質(zhì)成立的前提條件就會(huì)出現(xiàn)錯(cuò)誤。
17、忽視基本不等式應(yīng)用條件致誤
利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數(shù)的最值時(shí),務(wù)必注意a,b為正數(shù)(或a,b非負(fù)),ab或a+b其中之一應(yīng)是定值,特別要注意等號(hào)成立的條件。對(duì)形如y=ax+bx(a,b>0)的函數(shù),在應(yīng)用基本不等式求函數(shù)最值時(shí),一定要注意ax,bx的符號(hào),必要時(shí)要進(jìn)行分類討論,另外要注意自變量x的取值范圍,在此范圍內(nèi)等號(hào)能否取到。
18、不等式恒成立問題致誤
解決不等式恒成立問題的常規(guī)求法是:借助相應(yīng)函數(shù)的單調(diào)性求解,其中的主要方法有數(shù)形結(jié)合法、變量分離法、主元法。通過最值產(chǎn)生結(jié)論。應(yīng)注意恒成立與存在性問題的區(qū)別,如對(duì)任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立問題,但對(duì)存在x∈[a,b],使f(x)≤g(x)成立,則為存在性問題,即f(x)min≤g(x)max,應(yīng)特別注意兩函數(shù)中的最大值與最小值的關(guān)系。
19、忽視三視圖中的實(shí)、虛線致誤
三視圖是根據(jù)正投影原理進(jìn)行繪制,嚴(yán)格按照“長(zhǎng)對(duì)正,高平齊,寬相等”的規(guī)則去畫,若相鄰兩物體的表面相交,表面的交線是它們的原分界線,且分界線和可視輪廓線都用實(shí)線畫出,不可見的輪廓線用虛線畫出,這一點(diǎn)很容易疏忽。
20、面積體積計(jì)算轉(zhuǎn)化不靈活致誤
面積、體積的計(jì)算既需要學(xué)生有扎實(shí)的基礎(chǔ)知識(shí),又要用到一些重要的思想方法,是高考考查的重要題型.因此要熟練掌握以下幾種常用的思想方法。(1)還臺(tái)為錐的思想:這是處理臺(tái)體時(shí)常用的思想方法。(2)割補(bǔ)法:求不規(guī)則圖形面積或幾何體體積時(shí)常用。(3)等積變換法:充分利用三棱錐的任意一個(gè)面都可作為底面的特點(diǎn),靈活求解三棱錐的體積。(4)截面法:尤其是關(guān)于旋轉(zhuǎn)體及與旋轉(zhuǎn)體有關(guān)的組合問題,常畫出軸截面進(jìn)行分析求解。
高三數(shù)學(xué)的答題技巧
1、調(diào)整好狀態(tài),控制好自我。
(1)保持清醒。數(shù)學(xué)的考試時(shí)間在下午,建議同學(xué)們中午最好休息半個(gè)小時(shí)或一個(gè)小時(shí),其間盡量放松自己,從心理上暗示自己:只有靜心休息才能確保考試時(shí)清醒。
(2)按時(shí)到位。今年的答題卡不再單獨(dú)發(fā)放,要求答在答題卷上,但發(fā)卷時(shí)間應(yīng)在開考前5-10分鐘內(nèi)。建議同學(xué)們提前15-20分鐘到達(dá)考場(chǎng)。
2、通覽試卷,樹立自信。
剛拿到試卷,一般心情比較緊張,此時(shí)不易匆忙作答,應(yīng)從頭到尾、通覽全卷,哪些是一定會(huì)做的題要心中有數(shù),先易后難,穩(wěn)定情緒。答題時(shí),見到簡(jiǎn)單題,要細(xì)心,莫忘乎所以。面對(duì)偏難的題,要耐心,不能急。
3、提高解選擇題的速度、填空題的準(zhǔn)確度。
數(shù)學(xué)選擇題是知識(shí)靈活運(yùn)用,解題要求是只要結(jié)果、不要過程。因此,逆代法、估算法、特例法、排除法、數(shù)形結(jié)合法……盡顯威力。12個(gè)選擇題,若能把握得好,容易的一分鐘一題,難題也不超過五分鐘。由于選擇題的特殊性,由此提出解選擇題要求“快、準(zhǔn)、巧”,忌諱“小題大做”。填空題也是只要結(jié)果、不要過程,因此要力求“完整、嚴(yán)密”。
4、審題要慢,做題要快,下手要準(zhǔn)。
題目本身就是破解這道題的信息源,所以審題一定要逐字逐句看清楚,只有細(xì)致地審題才能從題目本身獲得盡可能多的信息。
找到解題方法后,書寫要簡(jiǎn)明扼要,快速規(guī)范,不拖泥帶水,牢記高考評(píng)分標(biāo)準(zhǔn)是按步給分,關(guān)鍵步驟不能丟,但允許合理省略非關(guān)鍵步驟。答題時(shí),盡量使用數(shù)學(xué)語言、符號(hào),這比文字?jǐn)⑹鲆?jié)省而嚴(yán)謹(jǐn)。
5、保質(zhì)保量拿下中下等題目。
中下題目通常占全卷的80%以上,是試題的主要部分,是考生得分的主要來源。誰能保質(zhì)保量地拿下這些題目,就已算是打了個(gè)勝仗,有了勝利在握的心理,對(duì)攻克高難題會(huì)更放得開。
6、要牢記分段得分的原則,規(guī)范答題。
會(huì)做的題目要特別注意表達(dá)的準(zhǔn)確、考慮的周密、書寫的規(guī)范、語言的科學(xué),防止被“分段扣點(diǎn)分”。
高三數(shù)學(xué)的六大類型題
一、三角函數(shù)題
三角題一般在解答題的前兩道題的位置上,主要考查三角恒等變換、三角函數(shù)的圖像與性質(zhì)、解三角形等有關(guān)內(nèi)容.三角函數(shù)、平面向量和三角形中的正、余弦定理相互交匯,是高考中考查的熱點(diǎn).
縱觀近幾年的高考試題,許多新穎別致的三角解答題就是以此為出發(fā)點(diǎn)設(shè)計(jì)的,在這類問題中平面向量往往只是起到“包裝”的作用,實(shí)際主要考查考生利用三角函數(shù)的性質(zhì)、三角恒等變換與正、余弦定理解決問題的能力.解決這類問題的基本思路是“脫掉向量的外衣,抓住問題的實(shí)質(zhì),靈活地實(shí)現(xiàn)問題的轉(zhuǎn)化,選擇合理的解決方法”,在解題過程中要注意三角恒等變換公式的多樣性和靈活性,注意題目中隱含的各種限制條件,做到推理嚴(yán)謹(jǐn)、計(jì)算準(zhǔn)確、表達(dá)確切.
注意的問題
注意歸一公式、誘導(dǎo)公式的正確性(轉(zhuǎn)化成同名同角三角函數(shù)時(shí),套用歸一公式、誘導(dǎo)公式(奇變、偶不變;符號(hào)看象限)時(shí),很容易因?yàn)榇中?,?dǎo)致錯(cuò)誤!一著不慎,滿盤皆輸!).
二、數(shù)列題
數(shù)列題重點(diǎn)考查等差數(shù)列、等比數(shù)列、遞推數(shù)列的綜合應(yīng)用,常與不等式、函數(shù)、導(dǎo)數(shù)等知識(shí)綜合交匯,既考查分類、轉(zhuǎn)化、化歸、歸納、遞推等數(shù)學(xué)思想方法,又考查綜合運(yùn)用知識(shí)進(jìn)行運(yùn)算、推理論證及解決問題的能力.近幾年這類試題的位置有所前移,難度明顯降低.
注意的問題
1.證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰為首項(xiàng),誰為公差(公比)的等差(等比)數(shù)列.
2.最后一問證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證.
3.證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單(所以要有構(gòu)造函數(shù)的意識(shí)).
三、立體幾何題
常以柱體、錐體、組合體為載體全方位地考查立體幾何中的重要內(nèi)容,如線線、線面與面面的位置關(guān)系,線面角、二面角問題,距離問題等,既有計(jì)算又有證明,一題多問,遞進(jìn)排列,此類試題既可用傳統(tǒng)方法解答,又可用空間向量法處理,有的題是兩法兼用,可謂珠聯(lián)璧合,相得益彰.究竟選用哪種方法,要由自己的長(zhǎng)處和圖形特點(diǎn)來確定.便于建立空間直角坐標(biāo)系的,往往選用向量法,反之,選用傳統(tǒng)方法.另外,“動(dòng)態(tài)”探索性問題是近幾年高考立體幾何命題的新亮點(diǎn),三視圖的巧妙參與也是立體幾何命題的新手法,要注意把握.
注意的問題
1.證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單.
2.求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時(shí),最好要建系.
3.注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系(符號(hào)問題、鈍角、銳角問題).
四、概率問題
概率題一般在解答題的前三道題的位置上,主要考查數(shù)據(jù)處理能力、應(yīng)用意識(shí)、必然與或然思想,因此近幾年概率題常以概率與統(tǒng)計(jì)的交匯形式呈現(xiàn),并用實(shí)際生活中的背景來“包裝”.概率重點(diǎn)考查離散型隨機(jī)變量的分布列與期望、互斥事件有一個(gè)發(fā)生的概率、相互獨(dú)立事件同時(shí)發(fā)生的概率、獨(dú)立重復(fù)試驗(yàn)與二項(xiàng)分布等;統(tǒng)計(jì)重點(diǎn)考查抽樣方法(特別是分層抽樣)、樣本的頻率分布、樣本的特征數(shù)、莖葉圖、線性回歸、列聯(lián)表等,穿插考查合情推理能力和優(yōu)化決策能力.同時(shí),關(guān)注幾何概型與定積分的交匯考查,此類試題在近幾年的高考中難度有所提升,考生應(yīng)有心理準(zhǔn)備.
注意的問題
1.搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù).
2.搞清是什么概率模型,套用哪個(gè)公式.
3.記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式.
4.求概率時(shí),正難則反(根據(jù)p1+p2+...+pn=1).
5.注意計(jì)數(shù)時(shí)利用列舉、樹圖等基本方法.
6.注意放回抽樣,不放回抽樣.
7.注意“零散的”的知識(shí)點(diǎn)(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透.
8.注意條件概率公式.
9.注意平均分組、不完全平均分組問題.
五、圓錐曲線問題
解析幾何題一般在解答題的后三道題的位置上,有時(shí)是“把關(guān)題”或“壓軸題”,說明了解析幾何題依然是重頭戲,在新課標(biāo)高考中依然占有較突出的地位.考查重點(diǎn):第一,解析幾何自身模塊的小交匯,是指以圓、圓錐曲線為載體呈現(xiàn)的,將兩種或兩種以上的知識(shí)結(jié)合起來綜合考查.如不同曲線(含直線)之間的結(jié)合,直線是各類曲線和相關(guān)試題最常用的“調(diào)味品”,顯示了直線與方程的各知識(shí)點(diǎn)的基礎(chǔ)性和應(yīng)用性.第二,圓錐曲線與不同模塊知識(shí)的大交匯,以解析幾何與函數(shù)、向量、代數(shù)知識(shí)的結(jié)合最為常見.有關(guān)解析幾何的最值、定值、定點(diǎn)問題應(yīng)給予重視.一般來說,解析幾何題計(jì)算量大且有一定的技巧性(要求品出“幾何味”來),需要“精打細(xì)算”,對(duì)考生的意志品質(zhì)和數(shù)學(xué)機(jī)智都是一種考驗(yàn)和檢測(cè).
注意的問題
1.注意求軌跡方程時(shí),從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數(shù)法、待定系數(shù)法.
2.注意直線的設(shè)法(法1分有斜率,沒斜率;法2設(shè)x=my+b(斜率不為零時(shí)),知道弦中點(diǎn)時(shí),往往用點(diǎn)差法);注意判別式;注意韋達(dá)定理;注意弦長(zhǎng)公式;注意自變量的取值范圍等等;
3.戰(zhàn)術(shù)上整體思路要保7分,爭(zhēng)9分,想12分。
六、導(dǎo)數(shù)、極值、最值、不等式恒成立(或逆用求參)問題
導(dǎo)數(shù)題考查的重點(diǎn)是用導(dǎo)數(shù)研究函數(shù)性質(zhì)或解決與函數(shù)有關(guān)的問題.往往將函數(shù)、不等式、方程、導(dǎo)數(shù)等有機(jī)地綜合,構(gòu)成一道超大型綜合題,體現(xiàn)了在“知識(shí)網(wǎng)絡(luò)交匯點(diǎn)處設(shè)計(jì)試題”的高考命題指導(dǎo)思想.鑒于該類試題的難度大,有些題還有高等數(shù)學(xué)的背景和競(jìng)賽題的味道,標(biāo)準(zhǔn)答案提供的解法往往如同“神來之筆”,確實(shí)想不到,加之“搏殺”到此時(shí)的考生的精力和考試時(shí)間基本耗盡,建議考生一定要當(dāng)機(jī)立斷,視時(shí)間和自身實(shí)力,先看第(1)問可否拿下,再確定放棄、分段得分或強(qiáng)攻.近幾年該類試題與解析幾何題輪流“坐莊”,經(jīng)常充當(dāng)“把關(guān)題”或“壓軸題”的重要角色.
注意的問題
1.先求函數(shù)的定義域,正確求出導(dǎo)數(shù),特別是復(fù)合函數(shù)的導(dǎo)數(shù),單調(diào)區(qū)間一般不能并,用“和”或“,”隔開(知函數(shù)求單調(diào)區(qū)間,不帶等號(hào);知單調(diào)性,求參數(shù)范圍,帶等號(hào)).
2.注意最后一問有應(yīng)用前面結(jié)論的意識(shí).
3.注意分論討論的思想.
4.不等式問題有構(gòu)造函數(shù)的意識(shí).
5.恒成立問題(分離常數(shù)法、利用函數(shù)圖像與根的分布法、求函數(shù)最值法).
6.整體思路上保6分,爭(zhēng)10分,想14分.
總之,解答題的過程要做到“步步有理有據(jù)”.書寫解題過程時(shí),要分清主次,要理清哪些步驟是必須寫的(即得分點(diǎn)),哪些步驟是可以在演草紙上演算的,只有“精”寫過程,才能節(jié)約時(shí)間,答題過程也才能簡(jiǎn)捷、清晰.當(dāng)然“精”寫過程是建立在步驟完整的基礎(chǔ)之上的,任何的“跳步”書寫都容易產(chǎn)生歧義,都是要失分的.當(dāng)然,要保證解答題得高分,除了步驟要寫清晰以外,結(jié)果還要準(zhǔn)確.“會(huì)而不對(duì)”的現(xiàn)象是很常見的,這也是制約“得分”的“致命點(diǎn)”。
猜你喜歡:
1.高三數(shù)學(xué)復(fù)習(xí)資料匯總
2.高三數(shù)學(xué)二輪總復(fù)習(xí)計(jì)劃匯總