特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學習啦 > 學習方法 > 初中學習方法 > 中考輔導 >

中考數(shù)學二次函數(shù)易錯題考點

時間: 曾揚1167 分享

  初中階段要學三類函數(shù),二次函數(shù)顯得尤為重要,不僅是中考必考內(nèi)容,而且是高中函數(shù)內(nèi)容的基礎,起著非常重要的作用,二次函數(shù)的內(nèi)容在社會生活的很多領域都有著極其重要的地位,學好二次函數(shù)對高中的學習和其他學科的學習都很重要。

  命題點 1 、二次函數(shù)的圖像與系數(shù)的關系:

  一、根據(jù)拋物線的特征確定其它函數(shù)的圖像:

  1、二次函數(shù) y = ax^2 + bx 的圖像如圖所示,那么一次函數(shù) y = ax + b 的圖像大致是 (B)。

  2、二次函數(shù) y = ax^2 + bx + c 的圖像如圖所示,反比例函數(shù) y = a/x 與正比例函數(shù) y = bx 在同一坐標系內(nèi)的大致圖像為 (C)。

  3、如圖,一次函數(shù) y1 = x 與 二次函數(shù) y2 = ax^2 + bx + c 的圖像相交于 P 、 Q 兩點,

  則函數(shù) y = ax^2 + ( b - 1 )x + c 的圖像可能是 (A)。

  解析:

  二、由拋物線的位置確定代數(shù)式的符號或未知數(shù)的值:

  4、二次函數(shù) y = ax^2 + bx + c 的圖像如圖所示,則下列關系式錯誤的是 (D)。

  A、a < 0 B、b > 0 C、 b^2 - 4ac > 0 D、 a + b + c < 0

  5、已知拋物線 y = ax^2 + bx + c 的圖像如圖所示, 則 ▏a - b + c ▏ + ▏ 2a + b ▏= (D)。

  A、a + b B、a - 2b C、 a - b D、 3a

  解析:

  6、二次函數(shù) y = ax^2 + bx + c (a ≠ 0)的圖像如圖所示,對稱軸是直線 x = 1 ,下列結論:

 ?、?ab < 0 ; ② b^2 - 4ac > 0 ; ③ a + b + 2c < 0 ; ④ 3a + c < 0 。其中正確的是 (C)。

  A、①④ B、②④ C、 ①②③ D、 ①②③④

  三、利用二次函數(shù)圖像解方程或不等式:

  7、已知二次函數(shù) y = ax^2 + bx + c 的部分圖像如圖所示,若 y < 0 , 則 x 的取值范圍是 (B)。

  A、-1 < x < 4 B、-1 < x < 3 C、 x < -1 或 x > 4 D、 x < -1 或 x > 3

  8、若 y = ax^2 + bx + c 的部分圖像如圖所示,則關于 x 的方程 ax^2 + bx + c = 0 的另一個解為 (B)。

  A、-2 B、-1 C、 0 D、 1

  9、如圖是二次函數(shù) y1 = ax^2 + bx + c 和 一次函數(shù) y2 = kx + t 的圖像,當 y1 ≥ y2 時 ,則 x 的取值范圍是多少?

  答案: -1 ≤ x ≤ 2 。

  命題點2、二次函數(shù)與幾何圖形的綜合(壓軸題):

  一、三角形中的存在性問題:

  10、如圖,拋物線 y = x^2 - bx + c 交 x 軸于點 A(1,0),交 y 軸于點 B ,對稱軸是直線 x = 2 。

  (1)求拋物線的解析式;

  (2)點 P 是拋物線對稱軸上的一個動點,是否存在點 P ,使 △PAB 的周長最小?若存在求出點 P 的坐標;若不存在,請說明理由 。

  解答過程:

  (1)

  (2)答 : 存在。

  11、如圖,已知拋物線 y = ax^2 + bx + c (a ≠ 0)經(jīng)過 A(-1,0),B(3,0),C(0,-3)三點 ,直線 l 是拋物線的對稱軸 。

  (1)求拋物線的解析式;

  (2)設點 P 是直線 l 上的一個動點,當點 P 到點 A 、點 B 的距離之和最短時,求點 P 的坐標;

  (3)點 M 也是直線 l 上的動點,且 △MAC 為等腰三角形,請直接寫出所有符合條件的點 M 的坐標 。

  解答過程:

  (1)

  (2)

  (3)

4006595