八年級(jí)數(shù)學(xué)青島版知識(shí)點(diǎn)
天才就是勤奮曾經(jīng)有人這樣說過。如果這話不完全正確,那至少在很大程度上是正確的。學(xué)習(xí),就算是天才,也是需要不斷練習(xí)與記憶的。下面是小編給大家整理的一些八年級(jí)數(shù)學(xué)的知識(shí)點(diǎn),希望對(duì)大家有所幫助。
初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)
統(tǒng)計(jì)的初步認(rèn)識(shí)
1、折線統(tǒng)計(jì)圖的特點(diǎn):能獲取數(shù)據(jù)變化情況的信息,并進(jìn)行簡(jiǎn)單的預(yù)測(cè)。
2、折線統(tǒng)計(jì)圖的方法:在方格紙中,根據(jù)所給出的數(shù)據(jù)把點(diǎn)標(biāo)出來,再用線將點(diǎn)連接起來,要順次連接。
3、能夠看出折線統(tǒng)計(jì)圖所提供的信息,并回答相關(guān)的問題。
補(bǔ)充內(nèi)容:
1、條形統(tǒng)計(jì)圖與折線統(tǒng)計(jì)圖的不同:條形統(tǒng)計(jì)圖用直條表示數(shù)量的多少,折線統(tǒng)計(jì)圖用折線表示數(shù)量的增減變化情況。
2、初步了解復(fù)式折線統(tǒng)計(jì)圖,能夠從中獲得相應(yīng)的信息,回答提出的問題。
課后練習(xí)
1.統(tǒng)計(jì)學(xué)的基本涵義是(D)。
A.統(tǒng)計(jì)資料
B.統(tǒng)計(jì)數(shù)字
C.統(tǒng)計(jì)活動(dòng)
D.是一門處理數(shù)據(jù)的方法和技術(shù)的科學(xué),也可以說統(tǒng)計(jì)學(xué)是一門研究“數(shù)據(jù)”的科學(xué),任務(wù)是如何有效地收集、整理和分析這些數(shù)據(jù),探索數(shù)據(jù)內(nèi)在的數(shù)量規(guī)律性,對(duì)所觀察的現(xiàn)象做出推斷或預(yù)測(cè),直到為采取決策提供依據(jù)。
2.要了解某一地區(qū)國(guó)有工業(yè)企業(yè)的生產(chǎn)經(jīng)營(yíng)情況,則統(tǒng)計(jì)總體是(B)。
A.每一個(gè)國(guó)有工業(yè)企業(yè)
B.該地區(qū)的所有國(guó)有工業(yè)企業(yè)
C.該地區(qū)的所有國(guó)有工業(yè)企業(yè)的生產(chǎn)經(jīng)營(yíng)情況
D.每一個(gè)企業(yè)
3.要了解20個(gè)學(xué)生的學(xué)習(xí)情況,則總體單位是(C)。
A.20個(gè)學(xué)生
B.20個(gè)學(xué)生的學(xué)習(xí)情況
C.每一個(gè)學(xué)生
D.每一個(gè)學(xué)生的學(xué)習(xí)情況
4.下列各項(xiàng)中屬于數(shù)量標(biāo)志的是(B)。
A.性別
B.年齡
C.職稱
D.健康狀況
5.總體和總體單位不是固定不變的,由于研究目的改變(A)。
A.總體單位有可能變換為總體,總體也有可能變換為總體單位
B.總體只能變換為總體單位,總體單位不能變換為總體
C.總體單位不能變換為總體,總體也不能變換為總體單位
D.任何一對(duì)總體和總體單位都可以互相變換
6.以下崗職工為總體,觀察下崗職工的性別構(gòu)成,此時(shí)的標(biāo)志是(C)。
A.男性職工人數(shù)
B.女性職工人數(shù)
C.下崗職工的性別
D.性別構(gòu)成
初二數(shù)學(xué)第一學(xué)期知識(shí)點(diǎn)
【第十三章實(shí)數(shù)】
※算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作.0的算術(shù)平方根為0;從定義可知,只有當(dāng)a≥0時(shí),a才有算術(shù)平方根.
※平方根:一般地,如果一個(gè)數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根.
※正數(shù)有兩個(gè)平方根(一正一負(fù))它們互為相反數(shù);0只有一個(gè)平方根,就是它本身;負(fù)數(shù)沒有平方根.
※正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù).
數(shù)a的相反數(shù)是-a,一個(gè)正實(shí)數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù),0的絕對(duì)值是0
【第十四章一次函數(shù)】
1.畫函數(shù)圖象的一般步驟:一、列表(一次函數(shù)只用列出兩個(gè)點(diǎn)即可,其他函數(shù)一般需要列出5個(gè)以上的點(diǎn),所列點(diǎn)是自變量與其對(duì)應(yīng)的函數(shù)值),二、描點(diǎn)(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)函數(shù)的值為縱坐標(biāo),描出表格中的個(gè)點(diǎn),一般畫一次函數(shù)只用兩點(diǎn)),三、連線(依次用平滑曲線連接各點(diǎn)).
2.根據(jù)題意寫出函數(shù)解析式:關(guān)鍵找到函數(shù)與自變量之間的等量關(guān)系,列出等式,既函數(shù)解析式.
3.若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量).特別地,當(dāng)b=0時(shí),稱y是x的正比例函數(shù).
4.正比列函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過原點(diǎn)(0,0)的一條直線.
5.正比列函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過原點(diǎn)的直線,當(dāng)k>0時(shí),直線y=kx經(jīng)過第一、三象限,y隨x的增大而增大,當(dāng)k<0時(shí),直線y=kx經(jīng)過第二、四象限,y隨x的增大而減小,在一次函數(shù)y=kx+b中:當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小.
6.已知兩點(diǎn)坐標(biāo)求函數(shù)解析式(待定系數(shù)法求函數(shù)解析式):
把兩點(diǎn)帶入函數(shù)一般式列出方程組
求出待定系數(shù)
把待定系數(shù)值再帶入函數(shù)一般式,得到函數(shù)解析式
7.會(huì)從函數(shù)圖象上找到一元一次方程的解(既與x軸的交點(diǎn)坐標(biāo)橫坐標(biāo)值),一元一次不等式的解集,二元一次方程組的解(既兩函數(shù)直線交點(diǎn)坐標(biāo)值)
1、配方法
所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜4、判別式法與韋達(dá)定理
一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。
韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解數(shù)學(xué)問題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解題時(shí),我們常常會(huì)采用這樣的方法,通過對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個(gè)/一個(gè)也沒有;至少有n個(gè)/至多有(n一1)個(gè);至多有一個(gè)/至少有兩個(gè);/至少有兩個(gè)。
歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
八年級(jí)數(shù)學(xué)青島版知識(shí)點(diǎn)相關(guān)文章:
★ 八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)整理歸納
★ 八年級(jí)數(shù)學(xué)考試知識(shí)點(diǎn)
★ 初中八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)
★ 八年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)整理
★ 八年級(jí)上冊(cè)數(shù)學(xué)總復(fù)習(xí)知識(shí)點(diǎn)
★ 八年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)
★ 八年級(jí)數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)總結(jié)
★ 八年級(jí)部編版數(shù)學(xué)知識(shí)點(diǎn)