八年級數(shù)學(xué)單元知識點
學(xué)習(xí)從來無捷徑。每一門科目都有自己的學(xué)習(xí)方法,但其實都是萬變不離其中的,數(shù)學(xué)作為主科之一,和語文英語一樣,也是要記、要背、要講練的。下面是小編給大家整理的一些八年級數(shù)學(xué)的知識點,希望對大家有所幫助。
初二上學(xué)期數(shù)學(xué)知識點歸納
一、勾股定理
1、勾股定理
直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。
2、勾股定理的逆定理
如果三角形的三邊長a,b,c有這種關(guān)系,那么這個三角形是直角三角形。
3、勾股數(shù)
滿足的三個正整數(shù),稱為勾股數(shù)。
常見的勾股數(shù)組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數(shù)組的倍數(shù)仍是勾股數(shù))。
二、證明
1、對事情作出判斷的句子,就叫做命題。即:命題是判斷一件事情的句子。
2、三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180度。
(1)證明三角形內(nèi)角和定理的思路是將原三角形中的三個角湊到一起組成一個平角。一般需要作輔助。
(2)三角形的外角與它相鄰的內(nèi)角是互為補(bǔ)角。
3、三角形的外角與它不相鄰的內(nèi)角關(guān)系
(1)三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。
(2)三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。
4、證明一個命題是真命題的基本步驟
(1)根據(jù)題意,畫出圖形。
(2)根據(jù)條件、結(jié)論,結(jié)合圖形,寫出已知、求證。
(3)經(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程。在證明時需注意:①在一般情況下,分析的過程不要求寫出來。②證明中的每一步推理都要有根據(jù)。如果兩條直線都和第三條直線平行,那么這兩條直線也相互平行。
八年級上冊數(shù)學(xué)知識點滬科版
(一)運(yùn)用公式法
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運(yùn)用公式法。
(二)平方差公式
平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語言:兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。
2.因式分解,必須進(jìn)行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方。
把a(bǔ)2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
①項數(shù):三項
②有兩項是兩個數(shù)的的平方和,這兩項的符號相同。
③有一項是這兩個數(shù)的積的兩倍。
(3)當(dāng)多項式中有公因式時,應(yīng)該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
初二下冊數(shù)學(xué)知識點歸納
第一章分式
1、分式及其基本性質(zhì)分式的分子和分母同時乘以(或除以)一個不等于零的整式,分式的只不變
2、分式的運(yùn)算
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變?yōu)橥帜傅姆质?,再加減
3、整數(shù)指數(shù)冪的加減乘除法
4、分式方程及其解法
第二章反比例函數(shù)
1、反比例函數(shù)的表達(dá)式、圖像、性質(zhì)
圖像:雙曲線
表達(dá)式:y=k/x(k不為0)
性質(zhì):兩支的增減性相同;
2、反比例函數(shù)在實際問題中的應(yīng)用
第三章勾股定理
1、勾股定理:直角三角形的兩個直角邊的平方和等于斜邊的平方
2、勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等于第三條邊的平方,那么這個三角形是直角三角形。
第四章四邊形
1、平行四邊形
性質(zhì):對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,并且等于第三邊的一半。
2、特殊的平行四邊形:矩形、菱形、正方形
(1)矩形
性質(zhì):矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質(zhì)
判定:有一個角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等于斜邊的一半。
(2)菱形性質(zhì):菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形具有平行四邊形的一切性質(zhì)
判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì)。
3、梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等;同一個底上的兩個角相等的梯形是等腰梯形。
第五章數(shù)據(jù)的分析
加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差
八年級數(shù)學(xué)單元知識點相關(guān)文章:
★ 人教版八年級數(shù)學(xué)上冊知識點總結(jié)