高二上冊數(shù)學(xué)知識點一覽2022
高中數(shù)學(xué)內(nèi)容,無論是在邏輯思維能力,還是在空間想象能力等方面,都較初中有著明顯的區(qū)別和更高的要求,較多的學(xué)生一進(jìn)入高中就感覺學(xué)數(shù)學(xué)不容易。下面小編為大家?guī)砀叨蟽詳?shù)學(xué)知識點一覽2022,希望大家喜歡!
高二上冊數(shù)學(xué)知識點
1.數(shù)列的定義
按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項
(1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列
(2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….
(4)數(shù)列的項與它的項數(shù)是不同的,數(shù)列的項是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當(dāng)于f(n),而項數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當(dāng)于f(n)中的n
(5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合
2.數(shù)列的分類
(1)根據(jù)數(shù)列的項數(shù)多少可以對數(shù)列進(jìn)行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時,對于有窮數(shù)列,要把末項寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列.
(2)按照項與項之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動數(shù)列、常數(shù)列.
3.數(shù)列的通項公式
數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的,
這兩個通項公式形式上雖然不同,但表示同一個數(shù)列,正像每個函數(shù)關(guān)系不都能用解析式表達(dá)出來一樣,也不是每個數(shù)列都能寫出它的通項公式;有的數(shù)列雖然有通項公式,但在形式上,又不一定是唯一的,僅僅知道一個數(shù)列前面的有限項,無其他說明,數(shù)列是不能確定的,通項公式更非唯一.如:數(shù)列1,2,3,4,…,
由公式寫出的后續(xù)項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據(jù)數(shù)列的構(gòu)成規(guī)律,多觀察分析,真正找到數(shù)列的內(nèi)在規(guī)律,由數(shù)列前幾項寫出其通項公式,沒有通用的方法可循.
再強調(diào)對于數(shù)列通項公式的理解注意以下幾點:
(1)數(shù)列的通項公式實際上是一個以正整數(shù)集N_或它的有限子集{1,2,…,n}為定義域的函數(shù)的表達(dá)式.
(2)如果知道了數(shù)列的通項公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個數(shù)列的各項;同時,用數(shù)列的通項公式也可判斷某數(shù)是否是某數(shù)列中的一項,如果是的話,是第幾項.
(3)如所有的函數(shù)關(guān)系不一定都有解析式一樣,并不是所有的數(shù)列都有通項公式.
如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構(gòu)成的數(shù)列1,1.4,1.41,1.414,1.4142,…就沒有通項公式.
(4)有的數(shù)列的通項公式,形式上不一定是唯一的,正如舉例中的:
(5)有些數(shù)列,只給出它的前幾項,并沒有給出它的構(gòu)成規(guī)律,那么僅由前面幾項歸納出的數(shù)列通項公式并不唯一.
4.數(shù)列的圖象
對于數(shù)列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應(yīng)關(guān)系:
序號:1234567
項:45678910
這就是說,上面可以看成是一個序號集合到另一個數(shù)的集合的映射.因此,從映射、函數(shù)的觀點看,數(shù)列可以看作是一個定義域為正整集N_(或它的有限子集{1,2,3,…,n})的函數(shù),當(dāng)自變量從小到大依次取值時,對應(yīng)的一列函數(shù)值.這里的函數(shù)是一種特殊的函數(shù),它的自變量只能取正整數(shù).
由于數(shù)列的項是函數(shù)值,序號是自變量,數(shù)列的通項公式也就是相應(yīng)函數(shù)和解析式.
數(shù)列是一種特殊的函數(shù),數(shù)列是可以用圖象直觀地表示的.
數(shù)列用圖象來表示,可以以序號為橫坐標(biāo),相應(yīng)的項為縱坐標(biāo),描點畫圖來表示一個數(shù)列,在畫圖時,為方便起見,在平面直角坐標(biāo)系兩條坐標(biāo)軸上取的單位長度可以不同,從數(shù)列的圖象表示可以直觀地看出數(shù)列的變化情況,但不精確.
把數(shù)列與函數(shù)比較,數(shù)列是特殊的函數(shù),特殊在定義域是正整數(shù)集或由以1為首的有限連續(xù)正整數(shù)組成的集合,其圖象是無限個或有限個孤立的點.
5.遞推數(shù)列
一堆鋼管,共堆放了七層,自上而下各層的鋼管數(shù)構(gòu)成一個數(shù)列:4,5,6,7,8,9,10.①
數(shù)列①還可以用如下方法給出:自上而下第一層的鋼管數(shù)是4,以下每一層的鋼管數(shù)都比上層的鋼管數(shù)多1
高中數(shù)學(xué)怎么學(xué)
高中生要學(xué)好數(shù)學(xué),須解決好兩個問題:第一是認(rèn)識問題;第二是方法問題。
有的同學(xué)覺得學(xué)好教學(xué)是為了應(yīng)付升學(xué)考試,因為數(shù)學(xué)分所占比重大;有的同學(xué)覺得學(xué)好數(shù)學(xué)是為將來進(jìn)一步學(xué)習(xí)相關(guān)專業(yè)打好基礎(chǔ),這些認(rèn)識都有道理,但不夠全面。實際上學(xué)習(xí)教學(xué)更重要的目的是接受數(shù)學(xué)思想、數(shù)學(xué)精神的熏陶,提高自身的思維品質(zhì)和科學(xué)素養(yǎng),果能如此,將終生受益。曾有一位領(lǐng)導(dǎo)告訴我,他的文科專業(yè)出身的秘書為他草擬的工作報告,因為華而不實又缺乏邏輯性,不能令他滿意,因此只得自己執(zhí)筆起草。
可見,即使將來從事文秘工作,也得要有較強的科學(xué)思維能力,而學(xué)習(xí)數(shù)學(xué)就是最好的思維體操。有些高一的同學(xué)覺得自己剛剛初中畢業(yè),離下次畢業(yè)還有3年,可以先松一口氣,待到高二、高三時再努力也不遲,甚至還以小學(xué)、初中就是這樣“先松后緊”地混過來作為“成功”的經(jīng)驗。
殊不知,第一,現(xiàn)在高中數(shù)學(xué)的教學(xué)安排是用兩年的時間學(xué)完三年的課程,高三全年搞總復(fù)習(xí),教學(xué)進(jìn)度排得很緊;第二,高中數(shù)學(xué)最重要、也是最難的內(nèi)容(如函數(shù)、立幾)放在高一年級學(xué),這些內(nèi)容一旦沒學(xué)好,整個高中數(shù)學(xué)就很難再學(xué)好,因此一開始就得抓緊,那怕在潛意識里稍有松懈的念頭,都會削弱學(xué)習(xí)的毅力,影響學(xué)習(xí)效果。
至于學(xué)習(xí)方法的講究,每位同學(xué)可根據(jù)自己的基礎(chǔ)、學(xué)習(xí)習(xí)慣、智力特點選擇適合自己的學(xué)習(xí)方法,我這里主要根據(jù)教材的特點提出幾點供大家學(xué)習(xí)時參考。
l、要重視數(shù)學(xué)概念的理解。高一數(shù)學(xué)與初中數(shù)學(xué)最大的區(qū)別是概念多并且較抽象,學(xué)起來“味道”同以往很不一樣,解題方法通常就來自概念本身。學(xué)習(xí)概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義并掌握各種等價的表達(dá)方式。例如,為什么函數(shù)y=f(x)與y=f-1(x)的圖象關(guān)于直線y=x對稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什么當(dāng)f(x-l)=f(1-x)時,函數(shù)y=f(x)的圖象關(guān)于y軸對稱,而 y=f(x-l)與 y=f(1-x)的圖象卻關(guān)于直線 x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關(guān)系的區(qū)別,兩者很容易混淆。
2‘學(xué)習(xí)立體幾何要有較好的空間想象能力,而培養(yǎng)空間想象能力的辦法有二:一是勤畫圖;二是自制模型協(xié)助想象,如利用四直角三棱錐的模型對照習(xí)題多看,多想。但最終要達(dá)到不依賴模型也能想象的境界。
3、學(xué)習(xí)解析幾何切忌把它學(xué)成代數(shù)、只計算不畫圖,正確的辦法是邊畫圖邊計算,要能在畫圖中尋求計算途徑。
4、在個人鉆研的基礎(chǔ)上,邀幾個程度相當(dāng)?shù)耐瑢W(xué)一起討論,這也是一種好的學(xué)習(xí)方法,這樣做??梢园褑栴}解決得更加透徹,對大家都有益。
數(shù)學(xué)教學(xué)心得
數(shù)學(xué)學(xué)習(xí)要注重提升素養(yǎng)承認(rèn)“解題”對數(shù)學(xué)學(xué)習(xí)的作用,并不是無限制地擴(kuò)大它的價值,畢竟解題只是數(shù)學(xué)學(xué)習(xí)的途徑與手段,絕不是數(shù)學(xué)學(xué)習(xí)的終極目標(biāo)。在新課程背景下,許多學(xué)者呼吁從關(guān)注“雙基”到“四基”,數(shù)學(xué)學(xué)習(xí)的目標(biāo)在于掌握必需的基礎(chǔ)知識和基本技能,積累豐富的活動經(jīng)驗,體悟數(shù)學(xué)的基本思想。數(shù)學(xué)學(xué)習(xí)不只是解題,在學(xué)習(xí)的過程中還將學(xué)會觀察,學(xué)會思考,學(xué)會表達(dá),學(xué)會書寫,學(xué)會合作。著名特級教師張?zhí)煨⒀芯啃W(xué)數(shù)學(xué)教學(xué)50年,他有一個治學(xué)心得是:“讓學(xué)生在學(xué)習(xí)中學(xué)會學(xué)習(xí),在思考中學(xué)會思考?!边@正是對數(shù)學(xué)學(xué)習(xí)目標(biāo)的精辟提升。
如果以上的表述并不具有數(shù)學(xué)學(xué)科的特點的話,那么加上一個定語——讓學(xué)生用數(shù)學(xué)的眼光進(jìn)行數(shù)學(xué)思考。比如,百貨店的促銷信息,人們不僅會關(guān)注哪個折扣低,還會關(guān)注標(biāo)價的高低。美國統(tǒng)計學(xué)家戴維〃S〃穆爾的《統(tǒng)計學(xué)的世界》一書中有幅漫畫,畫的是一個人誤以為平均水深就是每一個地方都是這樣的水深而溺水死亡,從側(cè)面反映了數(shù)學(xué)常識在現(xiàn)實生活中的作用。
數(shù)學(xué)地思考,是數(shù)學(xué)學(xué)習(xí)的更高目標(biāo)。數(shù)學(xué)學(xué)習(xí)過程中所倡導(dǎo)的思考方式是具有學(xué)科特點的??吹揭环鶊D畫時,別的學(xué)科可能關(guān)注的是這幅圖是多么的美觀,但是對于數(shù)學(xué)學(xué)習(xí)來說,教師需要引導(dǎo)學(xué)生關(guān)注這個圖形的組成與分解,引導(dǎo)學(xué)生思考的是多邊形線的條數(shù)等。這種量化、精確化的思考方式是數(shù)學(xué)教學(xué)最根本的目標(biāo)價值所在。
高二上冊數(shù)學(xué)知識點一覽2022相關(guān)文章:
★ 2022高考數(shù)學(xué)不等式復(fù)習(xí)知識點
★ 高二數(shù)學(xué)教學(xué)工作計劃模板2022
★ 人教版五年級數(shù)學(xué)上冊知識點歸納2022
★ 2022中考數(shù)學(xué)知識點總結(jié)
★ 2022初中數(shù)學(xué)知識點全總結(jié)