高中高考數(shù)學(xué)重要知識點(diǎn)總結(jié)
關(guān)于高中高考數(shù)學(xué)重要知識點(diǎn)總結(jié)
高中高考數(shù)學(xué)重要知識點(diǎn)總結(jié)如何寫呢?有很多的同學(xué)是非常的想知道,高中數(shù)學(xué)有哪些重要的知識點(diǎn)的,以下是小編精心收集整理的高中高考數(shù)學(xué)重要知識點(diǎn)總結(jié),下面小編就和大家分享,來欣賞一下吧。
高中高考數(shù)學(xué)重要知識點(diǎn)總結(jié)
1、知識范圍
(1)函數(shù)的概念
函數(shù)的定義、函數(shù)的表示法、分段函數(shù)、隱函數(shù)
(2)函數(shù)的性質(zhì)
單調(diào)性、奇偶性、有界性、周期性
(3)反函數(shù)
反函數(shù)的定義、反函數(shù)的圖像
(4)基本初等函數(shù)
冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)、反三角函數(shù)
(5)函數(shù)的四則運(yùn)算與復(fù)合運(yùn)算
(6)初等函數(shù)
2、要求
(1)理解函數(shù)的概念,會求函數(shù)的表達(dá)式、定義域及函數(shù)值,會求分段函數(shù)的定義域、函數(shù)值,會作出簡單的分段函數(shù)的圖像。
(2)理解函數(shù)的單調(diào)性、奇偶性、有界性和周期性。
(3)了解函數(shù)與其反函數(shù)之間的關(guān)系(定義域、值域、圖像),會求單調(diào)函數(shù)的反函數(shù)。
(4)熟練掌握函數(shù)的四則運(yùn)算與復(fù)合運(yùn)算。
(5)掌握基本初等函數(shù)的性質(zhì)及其圖像。
(6)了解初等函數(shù)的概念。
(7)會建立簡單實際問題的函數(shù)關(guān)系式。
1、知識范圍
(1)向量的概念
向量的定義、向量的模、單位向量、向量在坐標(biāo)軸上的投影、向量的坐標(biāo)表示法、向量的方向余弦
(2)向量的線性運(yùn)算
向量的.加法、向量的減法、向量的數(shù)乘
(3)向量的數(shù)量積
二向量的夾角、二向量垂直的充分必要條件
(4)二向量的向量積、二向量平行的充分必要條件
2、要求
(1)理解向量的概念,掌握向量的坐標(biāo)表示法,會求單位向量、方向余弦、向量在坐標(biāo)軸上的投影。
(2)熟練掌握向量的線性運(yùn)算、向量的數(shù)量積與向量積的計算方法。
(3)熟練掌握二向量平行、垂直的充分必要條件。
1、知識范圍
(1)導(dǎo)數(shù)概念
導(dǎo)數(shù)的定義、左導(dǎo)數(shù)與右導(dǎo)數(shù)、函數(shù)在一點(diǎn)處可導(dǎo)的充分必要條件導(dǎo)數(shù)的幾何意義與物理意義、可導(dǎo)與連續(xù)的關(guān)系
(2)求導(dǎo)法則與導(dǎo)數(shù)的基本公式
導(dǎo)數(shù)的四則運(yùn)算、反函數(shù)的導(dǎo)數(shù)、導(dǎo)數(shù)的基本公式
(3)求導(dǎo)方法
復(fù)合函數(shù)的求導(dǎo)法、隱函數(shù)的求導(dǎo)法、對數(shù)求導(dǎo)法由參數(shù)方程確定的函數(shù)的求導(dǎo)法、求分段函數(shù)的導(dǎo)數(shù)
(4)高階導(dǎo)數(shù)
高階導(dǎo)數(shù)的定義、高階導(dǎo)數(shù)的計算
(5)微分
微分的定義、微分與導(dǎo)數(shù)的關(guān)系、微分法則一階微分形式不變性
2、要求
(1)理解導(dǎo)數(shù)的概念及其幾何意義,了解可導(dǎo)性與連續(xù)性的關(guān)系,掌握用定義求函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的方法。
(2)會求曲線上一點(diǎn)處的切線方程與法線方程。
(3)熟練掌握導(dǎo)數(shù)的基本公式、四則運(yùn)算法則及復(fù)合函數(shù)的求導(dǎo)方法,會求反函數(shù)的導(dǎo)數(shù)。
(4)掌握隱函數(shù)求導(dǎo)法、對數(shù)求導(dǎo)法以及由參數(shù)方程所確定的函數(shù)的求導(dǎo)方法,會求分段函數(shù)的導(dǎo)數(shù)。
(5)理解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的階導(dǎo)數(shù)。
(6)理解函數(shù)的微分概念,掌握微分法則,了解可微與可導(dǎo)的關(guān)系,會求函數(shù)的一階微分。
高考數(shù)學(xué)必備公式匯總
橢圓周長公式:L=2πb+4(a-b)
橢圓周長定理:橢圓的周長等于該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。
橢圓面積計算公式
橢圓面積公式: S=πab
橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。
以上橢圓周長、面積公式中雖然沒有出現(xiàn)橢圓周率T,但這兩個公式都是通過橢圓周率T推導(dǎo)演變而來。常數(shù)為體,公式為用。
橢圓形物體 體積計算公式橢圓 的 長半徑__短半徑__PAI__高
弧長公式 l=a__r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2__l__r
錐體體積公式 V=1/3__S__H 圓錐體體積公式 V=1/3__pi__r2h
斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長
柱體體積公式 V=s__h 圓柱體 V=pi__r2h
圖形周長 面積 體積公式
長方形的周長=(長+寬)×2
正方形的周長=邊長×4
長方形的面積=長×寬
正方形的面積=邊長×邊長
三角形的面積
已知三角形底a,高h(yuǎn),則S=ah/2
已知三角形三邊a,b,c,半周長p,則S= √[p(p - a)(p - b)(p - c)] (海倫公式)(p=(a+b+c)/2)
和:(a+b+c)__(a+b-c)__1/4
高考數(shù)學(xué)考前復(fù)習(xí)注意事項
1、要有針對性地做題,典型的題目,應(yīng)該規(guī)范地完成,同時還應(yīng)了解自己,有選擇地做一些課外的題。
2、要循序漸進(jìn),由易到難,要對做過了典型題目有一定的體會和變通,即按“學(xué)、練、思、結(jié)”程序?qū)Υ湫偷膯栴},這樣做能起到事半功倍的效果。
3、是無論是作業(yè)還是測驗,都應(yīng)把準(zhǔn)確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是學(xué)好數(shù)學(xué)的重要問題。
4、獨(dú)立思考是數(shù)學(xué)的靈魂,遇到不懂或困難的問題時,要堅持獨(dú)立思考,不輕易問人,不要一遇到不會的東西就馬上去問別人,自己不動腦子,專門依賴別人,而是要自己先認(rèn)真地思考一下,依靠自己的努力克服其中的某些困難,經(jīng)過很大的努力仍不能解決的問題,再虛心請教別人,請教時,不要把問題問得太透。學(xué)會提出問題,提出問題往往比解決問題更難,而且也更重要。