特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學習啦 > 學習方法 > 高中學習方法 > 高考輔導資料 > 高考前必看數(shù)學考點資料內(nèi)容

高考前必看數(shù)學考點資料內(nèi)容

時間: 業(yè)鴻0 分享

高考前必看數(shù)學考點資料內(nèi)容大全

在高考前一段時間的數(shù)學的復習中,應當聽從老師的安排,跟隨考綱的重點,明確復習的重要目標,查漏補缺,尋求新的提升。下面是小編為大家整理的關于高考前必看數(shù)學考點資料內(nèi)容,歡迎大家來閱讀。

高考前必看數(shù)學考點資料內(nèi)容

高中數(shù)學簡單的知識點

空間幾何體表面積體積公式:

1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)。

2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高。

3、a—邊長,S=6a2,V=a3。

4、長方體a—長,b—寬,c—高S=2(ab+ac+bc)V=abc。

5、棱柱S—h—高V=Sh。

6、棱錐S—h—高V=Sh/3。

7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。

8、S1—上底面積,S2—下底面積,S0—中h—高,V=h(S1+S2+4S0)/6。

9、圓柱r—底半徑,h—高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h。

10、空心圓柱R—外圓半徑,r—內(nèi)圓半徑h—高V=πh(R^2—r^2)。

11、r—底半徑h—高V=πr^2h/3。

12、r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/313、球r—半徑d—直徑V=4/3πr^3=πd^3/6。

14、球缺h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3。

15、球臺r1和r2—球臺上、下底半徑h—高V=πh[3(r12+r22)+h2]/6。

16、圓環(huán)體R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑V=2π2Rr2=π2Dd2/4。

17、桶狀體D—桶腹直徑d—桶底直徑h—桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)。

高中數(shù)學基本知識點

軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

一、求動點的軌跡方程的基本步驟。

1.建立適當?shù)淖鴺讼?,設出動點M的坐標;

2.寫出點M的集合;

3.列出方程=0;

4.化簡方程為最簡形式;

5.檢驗。

二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數(shù)法和交軌法等。

1.直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

2.定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

3.相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。

4.參數(shù)法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數(shù)t的關系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

5.交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

求動點軌跡方程的一般步驟:

①建系——建立適當?shù)淖鴺讼?

②設點——設軌跡上的任一點P(x,y);

③列式——列出動點p所滿足的關系式;

④代換——依條件的特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡;

⑤證明——證明所求方程即為符合條件的動點軌跡方程。

高中數(shù)學知識點總結

1、柱、錐、臺、球的結構特征

(1)棱柱:

定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。

表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。

幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等

表示:用各頂點字母,如五棱錐

幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

(3)棱臺:

定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等

表示:用各頂點字母,如五棱臺

幾何特征:

①上下底面是相似的平行多邊形

②側面是梯形

③側棱交于原棱錐的頂點

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。

幾何特征:

①底面是全等的圓;

②母線與軸平行;

③軸與底面圓的半徑垂直;

④側面展開圖是一個矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

幾何特征:

①底面是一個圓;

②母線交于圓錐的頂點;

③側面展開圖是一個扇形。

(6)圓臺:

定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特征:

①上下底面是兩個圓;

②側面母線交于原圓錐的頂點;

③側面展開圖是一個弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特征:

①球的截面是圓;

②球面上任意一點到球心的距離等于半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)

注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:

①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

1879482