高中數(shù)學(xué)冪函數(shù)知識點(diǎn)
形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。下面小編給大家分享一些高中數(shù)學(xué)冪函數(shù)知識點(diǎn),希望能夠幫助大家,歡迎閱讀!
高中數(shù)學(xué)冪函數(shù)知識點(diǎn)
定義域和值域:
當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域
性質(zhì):
對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時,設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:
排除了為0與負(fù)數(shù)兩種可能,即對于x>0,則a可以是任意實(shí)數(shù);
排除了為0這種可能,即對于x<0和x>0的所有實(shí)數(shù),q不能是偶數(shù);
排除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。
總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:
如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);
如果a為負(fù)數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。
在x大于0時,函數(shù)的值域總是大于0的實(shí)數(shù)。
在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。
而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。
由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(1,1)這點(diǎn)。
(2)當(dāng)a大于0時,冪函數(shù)為單調(diào)遞增的,而a小于0時,冪函數(shù)為單調(diào)遞減函數(shù)。
(3)當(dāng)a大于1時,冪函數(shù)圖形下凹;當(dāng)a小于1大于0時,冪函數(shù)圖形上凸。
(4)當(dāng)a小于0時,a越小,圖形傾斜程度越大。
(5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點(diǎn)。
(6)顯然冪函數(shù)無界。
高中數(shù)學(xué)冪函數(shù)公式
1、同底數(shù)冪的乘法: a^m×a^n=a^(m+n))(m、n都是整數(shù))。
2、冪的乘方(a^m)^n=a^(mn),與積的乘方(ab)^n=a^nb^n。
3、同底數(shù)冪的除法:am÷an=a(m-n) (a≠0,m,n均為正整數(shù),并且m>n)。
冪函數(shù)的特點(diǎn)
冪函數(shù)包含了數(shù)量豐富的各種函數(shù),衍生出去,銜接了個數(shù)不菲的常用函數(shù),譬如:一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)、根式函數(shù)、立方函數(shù)。
影響冪函數(shù)圖像的走向和形狀的重要因素實(shí)際上是α,當(dāng)0<α<1時,盡管整個冪函數(shù)圖像總體還是上升的,但上升的速度在逐漸減小,最后趨近于0。
如何學(xué)好高二數(shù)學(xué)方法
1、回歸課本,重視基礎(chǔ),注重預(yù)習(xí)
數(shù)學(xué)的基本概念、定義、公式,數(shù)學(xué)知識點(diǎn)的聯(lián)系,基本的數(shù)學(xué)解題思路與方法,是第一輪復(fù)習(xí)的重中之重。
回歸課本,自已先對知識點(diǎn)進(jìn)行梳理,確?;靖拍?、公式等牢固掌握,要扎扎實(shí)實(shí),不要盲目攀高,欲速則不達(dá)。復(fù)習(xí)課的容量大、內(nèi)容多、時間緊。要提高復(fù)習(xí)效率,必須使自己的思維與老師的思維同步。而預(yù)習(xí)則是達(dá)到這一目的的重要途徑。沒有預(yù)習(xí),聽老師講課,會感到老師講的都重要,抓不住老師講的重點(diǎn);而預(yù)習(xí)了之后,再聽老師講課,就會在記憶上對老師講的內(nèi)容有所取舍,把重點(diǎn)放在自己還未掌握的內(nèi)容上,從而提高復(fù)習(xí)效率。預(yù)習(xí)還可以培養(yǎng)自己的自學(xué)能力。
2、提高聽課效率,勤動手,多動腦
高三的課只有兩種形式:復(fù)習(xí)課和評講課,到高三所有課都進(jìn)入復(fù)習(xí)階段,通過復(fù)習(xí),學(xué)生要能檢測出知道什么,哪些還不知道,哪些還不會,因此在復(fù)習(xí)課之前一定要有自己的思考,聽課的目的就明確了。
現(xiàn)在學(xué)生手中都會有一種復(fù)習(xí)資料,在老師講課之前,要把例題做一遍,做題中發(fā)現(xiàn)的難點(diǎn),就是聽課的重點(diǎn);對預(yù)習(xí)中遇到的沒有掌握好的有關(guān)的舊知識,可進(jìn)行補(bǔ)缺,以減少聽課過程中的困難;有助于提高思維能力,自己理解了的東西與老師的講解進(jìn)行比較、分析即可提高自己思維水平;體會分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,提高思維和解決問題的能力。
此外還要特別注意老師講課中的提示。作好筆記,筆記不是記錄而是將上述聽課中的要點(diǎn),思維方法等做出簡單扼要的記錄,以便復(fù)習(xí),消化,思考。習(xí)題的解答過程留在課后去完成,每記的地方留點(diǎn)空余的地方,以備自已的感悟。
3、適量訓(xùn)練
學(xué)好數(shù)學(xué)要做大量的題,要提高解題的效率,做題的目的在于檢查你學(xué)的知識,方法是否掌握得很好。如果你掌握得不準(zhǔn),甚至有偏差,那么多做題的結(jié)果,反而鞏固了你的缺欠,因此,要在準(zhǔn)確地把握住基本知識和方法的基礎(chǔ)上做大量的練習(xí)是必要的。
(1)要有針對性地做題,典型的題目,應(yīng)該規(guī)范地完成,同時還應(yīng)了解自己,有選擇地做一些課外的題;
(2)要循序漸進(jìn),由易到難,要對做過了典型題目有一定的體會和變通,即按“學(xué)、練、思、結(jié)”程序?qū)Υ湫偷膯栴},這樣做能起到事半功倍的效果。
(3)是無論是作業(yè)還是測驗(yàn),都應(yīng)把準(zhǔn)確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是學(xué)好數(shù)學(xué)的重要問題。
(4)獨(dú)立思考是數(shù)學(xué)的靈魂,遇到不懂或困難的問題時,要堅持獨(dú)立思考,不輕易問人,不要一遇到不會的東西就馬上去問別人,自己不動腦子,專門依賴別人,而是要自己先認(rèn)真地思考一下,依靠自己的努力克服其中的某些困難,經(jīng)過很大的努力仍不能解決的問題,再虛心請教別人,請教時,不要把問題問得太透。學(xué)會提出問題,提出問題往往比解決問題更難,而且也更重要。
(5)加強(qiáng)做題后的反思,解題不是目的,我們是通過解題來檢驗(yàn)我們的學(xué)習(xí)效果,發(fā)現(xiàn)學(xué)習(xí)中的不足的,以便改進(jìn)和提高。因此,解題后的總結(jié)至關(guān)重要,這正是我們學(xué)習(xí)的大好機(jī)會,對于一道完成的題目,有以下幾個方面需要總結(jié):
①在知識方面,題目中涉及哪些概念、定理、公式等基礎(chǔ)知識,在解題過程中是如何應(yīng)用這些知識的。
②在方法方面:如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應(yīng)用。
③能不能把解題過程概括、歸納成幾個步驟(比如用數(shù)學(xué)歸納法證明題目就有很明顯的三個步驟)。
4、養(yǎng)成良好的解題習(xí)慣
如仔細(xì)閱讀題目,看清數(shù)字,規(guī)范解題格式,部分同學(xué)(尤其是腦子比較好的同學(xué))自己感覺很好,平時做題只是寫個答案,不注重解題過程,書寫不規(guī)范,在正規(guī)考試中即使答案對了,由于過程不完整被扣分較多。
部分同學(xué)平時學(xué)習(xí)過程中自信心不足,做作業(yè)時免不了互相對答案,也不認(rèn)真找出錯誤原因并加以改正。這些同學(xué)到了考場上常會出現(xiàn)心理性錯誤,導(dǎo)致“會而不對”,或是為了保證正確率,反復(fù)驗(yàn)算,浪費(fèi)很多時間,影響整體得分。這些問題都很難在短時間得以解決,必須在平時下功夫努力改正。“會而不對”是高三數(shù)學(xué)學(xué)習(xí)的大忌,常見的有審題失誤、計算錯誤等,平時都以為是粗心,其實(shí)這是一種不良的學(xué)習(xí)習(xí)慣,必須在第一輪復(fù)習(xí)中逐步克服,否則,后患無窮。
可結(jié)合平時解題中存在的具體問題,逐題找出原因,看其是行為習(xí)慣方面的原因,還是知識方面的缺陷,再有針對性加以解決。必要時作些記錄,也就是錯題本,每位學(xué)生必備的,以便以后查詢。
5、分析試卷,將存在的問題分類
每次考試結(jié)束試卷發(fā)下來,要認(rèn)真分析得失,總結(jié)經(jīng)驗(yàn)教訓(xùn)。特別是將試卷中出現(xiàn)的錯誤進(jìn)行分類,可如下分類:
第一類問題遺憾之錯。就是分明會做,反而做錯了的題;比如說,“審題之錯”是由于審題出現(xiàn)失誤,看錯數(shù)字等造成的;“計算之錯”是由于計算出現(xiàn)差錯造成的;“抄寫之錯”是在草稿紙上做對了,往試卷上一抄就寫錯了、漏掉了;“表達(dá)之錯”是自己答案正確但與題目要求的表達(dá)不一致,如角的單位混用等。出現(xiàn)這類問題是考試后最后悔的事情。
消除遺憾要消除遺憾必須弄清遺憾的原因,然后找出解決問題的辦法,如“審題之錯”,是否出在急于求成?可采取“一慢一快”戰(zhàn)術(shù),即審題要慢、答題要快?!坝嬎沐e誤”,是否由于草稿紙用得太亂等。建議將草稿紙對折分塊,每一塊上演算一道題,有序排列便于回頭查找?!俺瓕懼e”,可以用檢查程序予以解決?!氨磉_(dá)之錯”,注意表達(dá)的規(guī)范性,平時作業(yè)就嚴(yán)格按照規(guī)范書寫表達(dá),學(xué)習(xí)高考評分標(biāo)準(zhǔn)寫出必要的步驟,并嚴(yán)格按著題目要求規(guī)范回答問題。
第二類問題似非之錯。記憶的不準(zhǔn)確,理解的不夠透徹,應(yīng)用得不夠自如;回答不嚴(yán)密、不完整;第一遍做對了,一改反而改錯了,或第一遍做錯了,后來又改對了;一道題做到一半做不下去了等等。弄懂似非“似是而非”是自己記憶不牢、理解不深、思路不清、運(yùn)用不活的內(nèi)容。這表明你的數(shù)學(xué)基礎(chǔ)不牢固,一定要突出重點(diǎn),夯實(shí)基礎(chǔ)。你要建立各部分內(nèi)容的知識網(wǎng)絡(luò);全面、準(zhǔn)確地把握概念,在理解的基礎(chǔ)上加強(qiáng)記憶;加強(qiáng)對易錯、易混知識的梳理;要多角度、多方位地去理解問題的實(shí)質(zhì);體會數(shù)學(xué)思想和解題的方法;當(dāng)然數(shù)學(xué)的學(xué)習(xí)要有一定題量的積累,才能達(dá)到舉一反三、運(yùn)用自如的水平。
第三類問題無為之錯。由于不會,因而答錯了或猜的,或者根本沒有答。這是無思路、不理解,更談不上應(yīng)用的問題。力爭有為在高三復(fù)習(xí)的第一輪中,不要做太難的題和綜合性很強(qiáng)的題目,因?yàn)榫C合題大多是由幾道基礎(chǔ)題組成的,只有夯實(shí)了基礎(chǔ),做熟了基礎(chǔ)題目,掌握了基本思想和方法,綜合題才能迎刃而解。在高三復(fù)習(xí)時間較緊的情況下,第一階段要有所為,有所不為,但平時考試和老師留的經(jīng)過篩選的題目要會做,要做好。
高二數(shù)學(xué)解題方法
1.先易后難。就是先做簡單題,再做綜合題,應(yīng)根據(jù)自己的實(shí)際,果斷跳過啃不動的題目,從易到難,也要注意認(rèn)真對待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。
2.先熟后生。通覽全卷,可以得到許多有利的積極因素,也會看到一些不利之處,對后者,不要驚慌失措,應(yīng)想到試題偏難對所有考生也難,通過這種暗示,確保情緒穩(wěn)定,對全卷整體把握之后,就可實(shí)施先熟后生的方法,即先做那些內(nèi)容掌握比較到家、題型結(jié)構(gòu)比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時,可以使思維流暢、超常發(fā)揮,達(dá)到拿下中高檔題目的目的。
3.先同后異。先做同科同類型的題目,思考比較集中,知識和方法的溝通比較容易,有利于提高單位時間的效益。高考題一般要求較快地進(jìn)行“興奮灶”的轉(zhuǎn)移,而“先同后異”,可以避免“興奮灶”過急、過頻的跳躍,從而減輕大腦負(fù)擔(dān),保持有效精力,
4.先小后大。小題一般是信息量少、運(yùn)算量小,易于把握,不要輕易放過,應(yīng)爭取在大題之前盡快解決,從而為解決大題贏得時間,創(chuàng)造一個寬松的心理基矗
5.先點(diǎn)后面。近年的高考數(shù)學(xué)解答題多呈現(xiàn)為多問漸難式的“梯度題”,解答時不必一氣審到底,應(yīng)走一步解決一步,而前面問題的解決又為后面問題準(zhǔn)備了思維基礎(chǔ)和解題條件,所以要步步為營,由點(diǎn)到面
6.先高后低。即在考試的后半段時間,要注重時間效益,如估計兩題都會做,則先做高分題;估計兩題都不易,則先就高分題實(shí)施“分段得分”,以增加在時間不足前提下的得分。
高中數(shù)學(xué)冪函數(shù)知識點(diǎn)相關(guān)文章:
★ 高一數(shù)學(xué)知識點(diǎn)(考前必看)
★ 高二數(shù)學(xué)重點(diǎn)知識點(diǎn)歸納
★ 高一數(shù)學(xué)知識點(diǎn)總結(jié)大全(最新版)
★ 關(guān)于高一數(shù)學(xué)的相關(guān)知識點(diǎn)
★ 高一數(shù)學(xué)知識點(diǎn)總結(jié)歸納