高三數(shù)學(xué)知識(shí)點(diǎn)必修一軌跡方程的求解
高考競(jìng)爭(zhēng)異常激烈,千軍萬(wàn)馬爭(zhēng)過(guò)獨(dú)木橋,秋天到了,而你正以凌厲的步伐邁進(jìn)這段特別的歲月中。這是一段青澀而又平淡的日子,每個(gè)人都隱身于高考,而平淡之中的張力卻只有真正的勇士才可以破譯。為了助你一臂之力,小編為你精心準(zhǔn)備了高三數(shù)學(xué)知識(shí)點(diǎn)必修一軌跡方程的求解,助你金榜題名!
一、概念
符合一定條件的動(dòng)點(diǎn)所形成的圖形,或者說(shuō),符合一定條件的點(diǎn)的全體所組成的集合,叫做滿(mǎn)足該條件的點(diǎn)的軌跡.
軌跡,包含兩個(gè)方面的問(wèn)題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性).
二、求動(dòng)點(diǎn)的軌跡方程的基本步驟
⒈建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);
⒉寫(xiě)出點(diǎn)M的集合;
⒊列出方程=0;
⒋化簡(jiǎn)方程為最簡(jiǎn)形式;
⒌檢驗(yàn)。
三、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
⒈直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
⒉定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿(mǎn)足某種已知曲線(xiàn)的定義,則可利用曲線(xiàn)的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。
⒊相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿(mǎn)足的曲線(xiàn)方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
⒋參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
⒌交軌法:將兩動(dòng)曲線(xiàn)方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線(xiàn)交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟
①建系——建立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);
③列式——列出動(dòng)點(diǎn)p所滿(mǎn)足的關(guān)系式;
④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);
⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。
高三數(shù)學(xué)知識(shí)點(diǎn)必修一軌跡方程的求解相關(guān)文章:
1.高考數(shù)學(xué)第二輪復(fù)習(xí)軌跡方程求解的要點(diǎn)總結(jié)
2.高三數(shù)學(xué)知識(shí)點(diǎn)
3.2020屆高三數(shù)學(xué)復(fù)習(xí)必修一知識(shí)點(diǎn)與答題套路
4.高中數(shù)學(xué)高一數(shù)學(xué)必修一知識(shí)點(diǎn)
5.高中數(shù)學(xué)高一數(shù)學(xué)必修一知識(shí)點(diǎn)與學(xué)習(xí)方法
6.2017年高考數(shù)學(xué)考點(diǎn)整理
7.高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)及數(shù)學(xué)學(xué)習(xí)方法
8.高三數(shù)學(xué)知識(shí)點(diǎn)考點(diǎn)總結(jié)大全