特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高三學(xué)習(xí)方法>高三數(shù)學(xué)>

高中數(shù)學(xué)50個(gè)解題小技巧

時(shí)間: 巧綿0 分享

解題要講究方式方法,考試才能輕松得高分,下面就是小編給大家?guī)?lái)的高中數(shù)學(xué)50個(gè)解題小技巧,希望大家喜歡!

高中數(shù)學(xué)50個(gè)解題小技巧

1 . 適用條件

[直線過(guò)焦點(diǎn)],必有ecosA=(x-1)/(x+1),其中A為直線與焦點(diǎn)所在軸夾角,是銳角。x為分離比,必須大于1。

注:上述公式適合一切圓錐曲線。如果焦點(diǎn)內(nèi)分(指的是焦點(diǎn)在所截線段上),用該公式;如果外分(焦點(diǎn)在所截線段延長(zhǎng)線上),右邊為(x+1)/(x-1),其他不變。

2 . 函數(shù)的周期性問(wèn)題(記憶三個(gè))

(1)若f(x)=-f(x+k),則T=2k;(2)若f(x)=m/(x+k)(m不為0),則T=2k;(3)若f(x)=f(x+k)+f(x-k),則T=6k。

注意點(diǎn):a.周期函數(shù),周期必?zé)o限b.周期函數(shù)未必存在最小周期,如:常數(shù)函數(shù)。c.周期函數(shù)加周期函數(shù)未必是周期函數(shù),如:y=sinxy=sin派x相加不是周期函數(shù)。

3 . 關(guān)于對(duì)稱問(wèn)題(無(wú)數(shù)人搞不懂的問(wèn)題)總結(jié)如下

(1)若在R上(下同)滿足:f(a+x)=f(b-x)恒成立,對(duì)稱軸為x=(a+b)/2(2)函數(shù)y=f(a+x)與y=f(b-x)的圖像關(guān)于x=(b-a)/2對(duì)稱;(3)若f(a+x)+f(a-x)=2b,則f(x)圖像關(guān)于(a,b)中心對(duì)稱

4 . 函數(shù)奇偶性

(1)對(duì)于屬于R上的奇函數(shù)有f(0)=0;(2)對(duì)于含參函數(shù),奇函數(shù)沒(méi)有偶次方項(xiàng),偶函數(shù)沒(méi)有奇次方項(xiàng)(3)奇偶性作用不大,一般用于選擇填空

5 . 數(shù)列爆強(qiáng)定律

(1)等差數(shù)列中:S奇=na中,例如S13=13a7(13和7為下角標(biāo));(2)等差數(shù)列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比數(shù)列中,上述2中各項(xiàng)在公比不為負(fù)一時(shí)成等比,在q=-1時(shí),未必成立(4)等比數(shù)列爆強(qiáng)公式:S(n+m)=S(m)+q?mS(n)可以迅速求q

6 . 數(shù)列的終極利器,特征根方程

首先介紹公式:對(duì)于an+1=pan+q(n+1為下角標(biāo),n為下角標(biāo)),a1已知,那么特征根x=q/(1-p),則數(shù)列通項(xiàng)公式為an=(a1-x)p?(n-1)+x,這是一階特征根方程的運(yùn)用。

二階有點(diǎn)麻煩,且不常用。所以不贅述。希望同學(xué)們牢記上述公式。當(dāng)然這種類型的數(shù)列可以構(gòu)造(兩邊同時(shí)加數(shù))

7 . 函數(shù)詳解補(bǔ)充

1、復(fù)合函數(shù)奇偶性:內(nèi)偶則偶,內(nèi)奇同外2、復(fù)合函數(shù)單調(diào)性:同增異減3、重點(diǎn)知識(shí)關(guān)于三次函數(shù):恐怕沒(méi)有多少人知道三次函數(shù)曲線其實(shí)是中心對(duì)稱圖形。

它有一個(gè)對(duì)稱中心,求法為二階導(dǎo)后導(dǎo)數(shù)為0,根x即為中心橫坐標(biāo),縱坐標(biāo)可以用x帶入原函數(shù)界定。另外,必有唯一一條過(guò)該中心的直線與兩旁相切。

8 . 常用數(shù)列bn=n×(2?n)求和Sn=(n-1)×(2?(n+1))+2

前面減去一個(gè)1,后面加一個(gè),再整體加一個(gè)2

9 . 適用于標(biāo)準(zhǔn)方程(焦點(diǎn)在x軸)爆強(qiáng)公式

k橢=-{(b?)xo}/{(a?)yo}k雙={(b?)xo}/{(a?)yo}k拋=p/yo

注:(xo,yo)均為直線過(guò)圓錐曲線所截段的中點(diǎn)。

10 . 強(qiáng)烈推薦一個(gè)兩直線垂直或平行的必殺技

已知直線L1:a1x+b1y+c1=0直線L2:a2x+b2y+c2=0若它們垂直:(充要條件)a1a2+b1b2=0;若它們平行:(充要條件)a1b2=a2b1且a1c2≠a2c1[這個(gè)條件為了防止兩直線重合)

注:以上兩公式避免了斜率是否存在的麻煩,直接必殺!

11 . 經(jīng)典中的經(jīng)典

相信鄰項(xiàng)相消大家都知道。下面看隔項(xiàng)相消:對(duì)于Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)]

注:隔項(xiàng)相加保留四項(xiàng),即首兩項(xiàng),尾兩項(xiàng)。自己把式子寫(xiě)在草稿紙上,那樣看起來(lái)會(huì)很清爽以及整潔!

12 . 爆強(qiáng)△面積公式

S=1/2∣mq-np∣其中向量AB=(m,n),向量BC=(p,q)

注:這個(gè)公式可以解決已知三角形三點(diǎn)坐標(biāo)求面積的問(wèn)題

13 . 你知道嗎?空間立體幾何中:以下命題均錯(cuò)

(1)空間中不同三點(diǎn)確定一個(gè)平面(2)垂直同一直線的兩直線平行(3)兩組對(duì)邊分別相等的四邊形是平行四邊形(4)如果一條直線與平面內(nèi)無(wú)數(shù)條直線垂直,則直線垂直平面(5)有兩個(gè)面互相平行,其余各面都是平行四邊形的幾何體是棱柱(6)有一個(gè)面是多邊形,其余各面都是三角形的幾何體都是棱錐

注:對(duì)初中生不適用。

14 . 一個(gè)小知識(shí)點(diǎn)

所有棱長(zhǎng)均相等的棱錐可以是三、四、五棱錐。

15 . 求f(x)=∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-n∣(n為正整數(shù))的最小值

答案為:當(dāng)n為奇數(shù),最小值為(n?-1)/4,在x=(n+1)/2時(shí)取到;

當(dāng)n為偶數(shù)時(shí),最小值為n?/4,在x=n/2或n/2+1時(shí)取到。

16 . √〔(a?+b?)〕/2≥(a+b)/2≥√ab≥2ab/(a+b)(a、b為正數(shù),是統(tǒng)一定義域)

17 . 橢圓中焦點(diǎn)三角形面積公式

S=b?tan(A/2)在雙曲線中:S=b?/tan(A/2)

說(shuō)明:適用于焦點(diǎn)在x軸,且標(biāo)準(zhǔn)的圓錐曲線。A為兩焦半徑夾角。

18 . 爆強(qiáng)定理

空間向量三公式解決所有題目:cosA=|{向量a.向量b}/[向量a的?!料蛄縝的模](1)A為線線夾角(2)A為線面夾角(但是公式中cos換成sin)(3)A為面面夾角注:以上角范圍均為[0,派/2]。

19 . 爆強(qiáng)公式

1?+2?+3?+…+n?=1/6(n)(n+1)(2n+1);1?3+2?3+3?3+…+n?3=1/4(n?)(n+1)?

20 . 爆強(qiáng)切線方程記憶方法

寫(xiě)成對(duì)稱形式,換一個(gè)x,換一個(gè)y

舉例說(shuō)明:對(duì)于y?=2px可以寫(xiě)成y×y=px+px再把(xo,yo)帶入其中一個(gè)得:y×yo=pxo+px

21 . 爆強(qiáng)定理

(a+b+c)?n的展開(kāi)式[合并之后]的項(xiàng)數(shù)為:Cn+22,n+2在下,2在上

22 . 轉(zhuǎn)化思想

切線長(zhǎng)l=√(d?-r?)d表示圓外一點(diǎn)到圓心得距離,r為圓半徑,而d最小為圓心到直線的距離。

23 . 對(duì)于y?=2px

過(guò)焦點(diǎn)的互相垂直的兩弦AB、CD,它們的和最小為8p。爆強(qiáng)定理的證明:對(duì)于y?=2px,設(shè)過(guò)焦點(diǎn)的弦傾斜角為A那么弦長(zhǎng)可表示為2p/〔(sinA)?〕,所以與之垂直的弦長(zhǎng)為2p/[(cosA)?]所以求和再據(jù)三角知識(shí)可知。(題目的意思就是弦AB過(guò)焦點(diǎn),CD過(guò)焦點(diǎn),且AB垂直于CD)

24 . 關(guān)于一個(gè)重要絕對(duì)值不等式的介紹爆強(qiáng)

∣|a|-|b|∣≤∣a±b∣≤∣a∣+∣b∣

25 . 關(guān)于解決證明含ln的不等式的一種思路

舉例說(shuō)明:證明1+1/2+1/3+…+1/n>ln(n+1)

把左邊看成是1/n求和,右邊看成是Sn。

解:令an=1/n,令Sn=ln(n+1),則bn=ln(n+1)-lnn,那么只需證an>bn即可,根據(jù)定積分知識(shí)畫(huà)出y=1/x的圖。an=1×1/n=矩形面積>曲線下面積=bn。當(dāng)然前面要證明1>ln2。

注:僅供有能力的童鞋參考!!另外對(duì)于這種方法可以推廣,就是把左邊、右邊看成是數(shù)列求和,證面積大小即可。說(shuō)明:前提是含ln。

26 . 爆強(qiáng)簡(jiǎn)潔公式

向量a在向量b上的射影是:〔向量a×向量b的數(shù)量積〕/[向量b的模]。記憶方法:在哪投影除以哪個(gè)的模

27 . 說(shuō)明一個(gè)易錯(cuò)點(diǎn)

若f(x+a)[a任意]為奇函數(shù),那么得到的結(jié)論是f(x+a)=-f(-x+a)〔等式右邊不是-f(-x-a)〕同理如果f(x+a)為偶函數(shù),可得f(x+a)=f(-x+a) 牢記

28 . 離心率爆強(qiáng)公式

e=sinA/(sinM+sinN)

注:P為橢圓上一點(diǎn),其中A為角F1PF2,兩腰角為M,N

29 . 橢圓的參數(shù)方程也是一個(gè)很好的東西,它可以解決一些最值問(wèn)題。

比如x?/4+y?=1求z=x+y的最值。解:令x=2cosay=sina再利用三角有界即可。比你去=0不知道快多少倍!

30 . 僅供有能力的童鞋參考的爆強(qiáng)公式

和差化積sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]

積化和差sinαsinβ=[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2

31 . 爆強(qiáng)定理

直觀圖的面積是原圖的√2/4倍。

32 . 三角形垂心爆強(qiáng)定理

(1)向量OH=向量OA+向量OB+向量OC(O為三角形外心,H為垂心)

(2)若三角形的三個(gè)頂點(diǎn)都在函數(shù)y=1/x的圖象上,則它的垂心也在這個(gè)函數(shù)圖象上。

33 . 維維安尼定理(不是很重要(僅供娛樂(lè)))

正三角形內(nèi)(或邊界上)任一點(diǎn)到三邊的距離之和為定值,這定值等于該三角形的高。

34 . 爆強(qiáng)思路

如果出現(xiàn)兩根之積x1x2=m,兩根之和x1+x2=n

我們應(yīng)當(dāng)形成一種思路,那就是返回去構(gòu)造一個(gè)二次函數(shù)再利用△大于等于0,可以得到m、n范圍。

35 . 常用結(jié)論

過(guò)(2p,0)的直線交拋物線y?=2px于A、B兩點(diǎn)。

O為原點(diǎn),連接AO.BO。必有角AOB=90度

36 . 爆強(qiáng)公式

ln(x+1)≤x(x>-1)該式能有效解決不等式的證明問(wèn)題。

舉例說(shuō)明:ln(1/(2?)+1)+ln(1/(3?)+1)+…+ln(1/(n?)+1)<1(n≥2)證明如下:令x=1/(n?),根據(jù)ln(x+1)≤x有左右累和右邊再放縮得:左和<1-1/n<1證畢!

37 . 函數(shù)y=(sinx)/x是偶函數(shù)

在(0,派)上它單調(diào)遞減,(-派,0)上單調(diào)遞增。

利用上述性質(zhì)可以比較大小。

38 . 函數(shù)

y=(lnx)/x在(0,e)上單調(diào)遞增,在(e,+無(wú)窮)上單調(diào)遞減。

另外y=x?(1/x)與該函數(shù)的單調(diào)性一致。

39 . 幾個(gè)數(shù)學(xué)易錯(cuò)點(diǎn)

(1)f`(x)<0是函數(shù)在定義域內(nèi)單調(diào)遞減的充分不必要條件(2)研究函數(shù)奇偶性時(shí),忽略最開(kāi)始的也是最重要的一步:考慮定義域是否關(guān)于原點(diǎn)對(duì)稱(3)不等式的運(yùn)用過(guò)程中,千萬(wàn)要考慮"="號(hào)是否取到(4)研究數(shù)列問(wèn)題不考慮分項(xiàng),就是說(shuō)有時(shí)第一項(xiàng)并不符合通項(xiàng)公式,所以應(yīng)當(dāng)極度注意:數(shù)列問(wèn)題一定要考慮是否需要分項(xiàng)!

40 . 提高計(jì)算能力五步曲

(1)扔掉計(jì)算器(2)仔細(xì)審題(提倡看題慢,解題快),要知道沒(méi)有看清楚題目,你算多少都沒(méi)用(3)熟記常用數(shù)據(jù),掌握一些速算技(4)加強(qiáng)心算、估算能力(5)檢驗(yàn)

41 . 一個(gè)美妙的公式

已知三角形中AB=a,AC=b,O為三角形的外心,則向量AO×向量BC(即數(shù)量積)=(1/2)[b?-a?]證明:過(guò)O作BC垂線,轉(zhuǎn)化到已知邊上

42 . 函數(shù)

①函數(shù)單調(diào)性的含義:大多數(shù)同學(xué)都知道若函數(shù)在區(qū)間D上單調(diào),則函數(shù)值隨著自變量的增大(減小)而增大(減小),但有些意思可能有些人還不是很清楚,若函數(shù)在D上單調(diào),則函數(shù)必連續(xù)(分段函數(shù)另當(dāng)別論)這也說(shuō)明了為什么不能說(shuō)y=tanx在定義域內(nèi)單調(diào)遞增,因?yàn)樗膱D像被無(wú)窮多條漸近線擋住,換而言之,不連續(xù).還有,如果函數(shù)在D上單調(diào),則函數(shù)在D上y與x一一對(duì)應(yīng).這個(gè)可以用來(lái)解一些方程.至于例子不舉了

②函數(shù)周期性:這里主要總結(jié)一些函數(shù)方程式所要表達(dá)的周期設(shè)f(x)為R上的函數(shù),對(duì)任意x∈R(1)f(a±x)=f(b±x)T=(b-a)(加絕對(duì)值,下同)(2)f(a±x)=-f(b±x)T=2(b-a)(3)f(x-a)+f(x+a)=f(x)T=6a(4)設(shè)T≠0,有f(x+T)=M[f(x)]其中M(x)滿足M[M(x)]=x,且M(x)≠x則函數(shù)的周期為2

43 . 奇偶函數(shù)概念的推廣

(1)對(duì)于函數(shù)f(x),若存在常數(shù)a,使得f(a-x)=f(a+x),則稱f(x)為廣義(Ⅰ)型偶函數(shù),且當(dāng)有兩個(gè)相異實(shí)數(shù)a,b滿足時(shí),f(x)為周期函數(shù)T=2(b-a)

(2)若f(a-x)=-f(a+x),則f(x)是廣義(Ⅰ)型奇函數(shù),當(dāng)有兩個(gè)相異實(shí)數(shù)a,b滿足時(shí),f(x)為周期函數(shù)T=2(b-a)

(3)有兩個(gè)實(shí)數(shù)a,b滿足廣義奇偶函數(shù)的方程式時(shí),就稱f(x)是廣義(Ⅱ)型的奇,偶函數(shù).且若f(x)是廣義(Ⅱ)型偶函數(shù),那么當(dāng)f在[a+b/2,∞)上為增函數(shù)時(shí),有f(x1)

44 . 函數(shù)對(duì)稱性

(1)若f(x)滿足f(a+x)+f(b-x)=c則函數(shù)關(guān)于(a+b/2,c/2)成中心對(duì)稱(2)若f(x)滿足f(a+x)=f(b-x)則函數(shù)關(guān)于直線x=a+b/2成軸對(duì)稱

柯西函數(shù)方程:若f(x)連續(xù)或單調(diào)(1)若f(xy)=f(x)+f(y)(x>0,y>0),則f(x)=㏒ax(2)若f(xy)=f(x)f(y)(x>0,y>0),則f(x)=x?u(u由初值給出)(3)f(x+y)=f(x)f(y)則f(x)=a?x(4)若f(x+y)=f(x)+f(y)+kxy,則f(x)=ax2+bx(5)若f(x+y)+f(x-y)=2f(x),則f(x)=ax+b特別的若f(x)+f(y)=f(x+y),則f(x)=kx

45 . 與三角形有關(guān)的定理或結(jié)論中學(xué)數(shù)學(xué)平面幾何最基本的圖形就是三角形

①正切定理(我自己取的,因?yàn)椴恢烂?:在非Rt△中,有tanA+tanB+tanC=tanAtanBtanC②任意三角形射影定理(又稱第一余弦定理):在△ABC中,a=bcosC+ccosB;b=ccosA+acosC;c=acosB+bcosA③任意三角形內(nèi)切圓半徑r=2S/a+b+c(S為面積),外接圓半徑應(yīng)該都知道了吧④梅涅勞斯定理:設(shè)A1,B1,C1分別是△ABC三邊BC,CA,AB所在直線的上的點(diǎn),則A1,B1,C1共線的充要條件是CB1/B1A·BA1/A1C·AC1/C1B=1

46 . 易錯(cuò)點(diǎn)

(5)數(shù)列求和中,常常使用的錯(cuò)位相減總是粗心算錯(cuò)規(guī)避方法:在寫(xiě)第二步時(shí),提出公差,括號(hào)內(nèi)等比數(shù)列求和,最后除掉系數(shù);(6)數(shù)列中常用變形公式不清楚,如:an=1/[n(n+2)]的求和保留四項(xiàng)

47 . 易錯(cuò)點(diǎn)

(7)數(shù)列未考慮a1是否符合根據(jù)sn-sn-1求得的通項(xiàng)公式;(8)數(shù)列并不是簡(jiǎn)單的全體實(shí)數(shù)函數(shù),即注意求導(dǎo)研究數(shù)列的最值問(wèn)題過(guò)程中是否取到問(wèn)題

48 . 易錯(cuò)點(diǎn)

(9)向量的運(yùn)算不完全等價(jià)于代數(shù)運(yùn)算;(10)在求向量的模運(yùn)算過(guò)程中平方之后,忘記開(kāi)方。比如這種選擇題中常常出現(xiàn)2,√2的答案…,基本就是選√2,選2的就是因?yàn)闆](méi)有開(kāi)方;(11)復(fù)數(shù)的幾何意義不清晰

49 . 關(guān)于輔助角公式

asint+bcost=[√(a?+b?)]sin(t+m)其中tanm=b/a[條件:a>0]說(shuō)明:一些的同學(xué)習(xí)慣去考慮sinm或者cosm來(lái)確定m,個(gè)人覺(jué)得這樣太容易出錯(cuò)最好的方法是根據(jù)tanm確定m.(見(jiàn)上)。舉例說(shuō)明:sinx+√3cosx=2sin(x+m),因?yàn)閠anm=√3,所以m=60度,所以原式=2sin(x+60度)

50 . A、B為橢圓x?/a?+y?/b?=1上任意兩點(diǎn)。若OA垂直O(jiān)B,則有1/∣OA∣?+1/∣OB∣?=1/a?+1/b?

高中數(shù)學(xué)50個(gè)解題小技巧相關(guān)文章

1.50個(gè)高考數(shù)學(xué)解題技巧

2.關(guān)于學(xué)好數(shù)學(xué)必知50個(gè)方法

3.高中數(shù)學(xué)解題技巧有哪些

4.高中數(shù)學(xué)復(fù)習(xí)技巧及解題攻略

5.改善高中數(shù)學(xué)做題慢的幾個(gè)技巧

6.提高高中數(shù)學(xué)做題速度的技巧總結(jié)

7.高中數(shù)學(xué)3個(gè)解題技巧口訣與數(shù)學(xué)學(xué)習(xí)方法

8.高中生數(shù)學(xué)考試小技巧

9.高中數(shù)學(xué)??碱}型答題技巧與方法及順口溜

10.高中數(shù)學(xué)六種解題技巧與五種數(shù)學(xué)答題思路

高中數(shù)學(xué)50個(gè)解題小技巧

解題要講究方式方法,考試才能輕松得高分,下面就是小編給大家?guī)?lái)的高中數(shù)學(xué)50個(gè)解題小技巧,希望大家喜歡!高中數(shù)學(xué)50個(gè)解題小技巧1 . 適用條件[直線過(guò)焦點(diǎn)],必有ecosA=(x-1)/(x+1),其?
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

精選文章

  • 高中數(shù)學(xué)答題通用答題套路
    高中數(shù)學(xué)答題通用答題套路

    2020高考即將開(kāi)戰(zhàn),你準(zhǔn)備好了嗎?小編為各位考生整理了一些高考復(fù)習(xí)方法,供大家參考閱讀!高考復(fù)習(xí)方法數(shù)學(xué)第二輪復(fù)習(xí),一般安排在2月中下旬到4月

  • 數(shù)學(xué)六大解答題技巧
    數(shù)學(xué)六大解答題技巧

    高考數(shù)學(xué)想拿高分,就要注重解題技巧,下面就是小編給大家?guī)?lái)的數(shù)學(xué)6大解答題技巧,希望大家喜歡!數(shù)學(xué)6大解答題技巧01三角函數(shù)題注意歸一公式、誘

  • 高考數(shù)學(xué)答題規(guī)范
    高考數(shù)學(xué)答題規(guī)范

    數(shù)學(xué)考試以題多、計(jì)算復(fù)雜著稱。通常綜合性的數(shù)學(xué)考試中,一張數(shù)學(xué)試卷會(huì)包含幾十個(gè)知識(shí)點(diǎn)。更要命的是,有些題目不止考察一個(gè)知識(shí)點(diǎn),而是多個(gè)知

  • 高考數(shù)學(xué)復(fù)習(xí)計(jì)劃范文
    高考數(shù)學(xué)復(fù)習(xí)計(jì)劃范文

      在高考這場(chǎng)無(wú)聲的較量中,每個(gè)人都希望自己能夠拔得頭籌,取得優(yōu)異成績(jī)。取得好成績(jī)的前提就是要有牢固的基礎(chǔ),眾所周知,高考最能拉分的科目

438741