關(guān)于高一數(shù)學(xué)的重要知識(shí)點(diǎn)
學(xué)習(xí)是我們生活中不可缺少的一部分,學(xué)習(xí)對于大部分人來說是枯燥乏味的,然而學(xué)習(xí)中也有許多未被我們發(fā)現(xiàn)的樂趣,我們只要抱有一顆上進(jìn)的心,一定可發(fā)現(xiàn)其中的樂趣。以下是小編給大家整理的關(guān)于高一數(shù)學(xué)的重要知識(shí)點(diǎn),希望大家能夠喜歡!
關(guān)于高一數(shù)學(xué)的重要知識(shí)點(diǎn)1
復(fù)數(shù)是高中代數(shù)的重要內(nèi)容,在高考試題中約占8%-10%,一般的出一道基礎(chǔ)題和一道中檔題,經(jīng)常與三角、解析幾何、方程、不等式等知識(shí)綜合.本章主要內(nèi)容是復(fù)數(shù)的概念,復(fù)數(shù)的代數(shù)、幾何、三角表示方法以及復(fù)數(shù)的運(yùn)算.方程、方程組,數(shù)形結(jié)合,分域討論,等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想與方法在本章中有突出的體現(xiàn).而復(fù)數(shù)是代數(shù),三角,解析幾何知識(shí),相互轉(zhuǎn)化的樞紐,這對拓寬學(xué)生思路,提高學(xué)生解綜合習(xí)題能力是有益的.數(shù)、式的運(yùn)算和解方程,方程組,不等式是學(xué)好本章必須具有的基本技能.簡化運(yùn)算的意識(shí)也應(yīng)進(jìn)一步加強(qiáng).
在本章學(xué)習(xí)結(jié)束時(shí),應(yīng)該明確對二次三項(xiàng)式的因式分解和解一元二次方程與二項(xiàng)方程可以畫上圓滿的句號了,對向量的運(yùn)算、曲線的復(fù)數(shù)形式的方程、復(fù)數(shù)集中的數(shù)列等邊緣性的知識(shí)還有待于進(jìn)一步的研究.
1.知識(shí)網(wǎng)絡(luò)圖
復(fù)數(shù)知識(shí)點(diǎn)網(wǎng)絡(luò)圖
2.復(fù)數(shù)中的難點(diǎn)
(1)復(fù)數(shù)的向量表示法的運(yùn)算.對于復(fù)數(shù)的向量表示有些學(xué)生掌握得不好,對向量的運(yùn)算的幾何意義的靈活掌握有一定的困難.對此應(yīng)認(rèn)真體會(huì)復(fù)數(shù)向量運(yùn)算的幾何意義,對其靈活地加以證明.
(2)復(fù)數(shù)三角形式的乘方和開方.有部分學(xué)生對運(yùn)算法則知道,但對其靈活地運(yùn)用有一定的困難,特別是開方運(yùn)算,應(yīng)對此認(rèn)真地加以訓(xùn)練.
(3)復(fù)數(shù)的輻角主值的求法.
(4)利用復(fù)數(shù)的幾何意義靈活地解決問題.復(fù)數(shù)可以用向量表示,同時(shí)復(fù)數(shù)的模和輻角都具有幾何意義,對他們的理解和應(yīng)用有一定難度,應(yīng)認(rèn)真加以體會(huì).
3.復(fù)數(shù)中的重點(diǎn)
(1)理解好復(fù)數(shù)的概念,弄清實(shí)數(shù)、虛數(shù)、純虛數(shù)的不同點(diǎn).
(2)熟練掌握復(fù)數(shù)三種表示法,以及它們間的互化,并能準(zhǔn)確地求出復(fù)數(shù)的模和輻角.復(fù)數(shù)有代數(shù),向量和三角三種表示法.特別是代數(shù)形式和三角形式的互化,以及求復(fù)數(shù)的模和輻角在解決具體問題時(shí)經(jīng)常用到,是一個(gè)重點(diǎn)內(nèi)容.
(3)復(fù)數(shù)的三種表示法的各種運(yùn)算,在運(yùn)算中重視共軛復(fù)數(shù)以及模的有關(guān)性質(zhì).復(fù)數(shù)的運(yùn)算是復(fù)數(shù)中的主要內(nèi)容,掌握復(fù)數(shù)各種形式的運(yùn)算,特別是復(fù)數(shù)運(yùn)算的幾何意義更是重點(diǎn)內(nèi)容.
(4)復(fù)數(shù)集中一元二次方程和二項(xiàng)方程的解法.
關(guān)于高一數(shù)學(xué)的重要知識(shí)點(diǎn)2
1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征
(1)棱柱:
定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱或用對角線的端點(diǎn)字母,如五棱柱。
幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
(3)棱臺(tái):
定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等
表示:用各頂點(diǎn)字母,如五棱臺(tái)
幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。
幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。
(6)圓臺(tái):
定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;
側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點(diǎn):
①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
關(guān)于高一數(shù)學(xué)的重要知識(shí)點(diǎn)3
冪函數(shù)
定義:
形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。
定義域和值域:
當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域
性質(zhì):
對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:
排除了為0與負(fù)數(shù)兩種可能,即對于x>0,則a可以是任意實(shí)數(shù);
排除了為0這種可能,即對于x<0和x>0的所有實(shí)數(shù),q不能是偶數(shù);
排除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。
關(guān)于高一數(shù)學(xué)的重要知識(shí)點(diǎn)相關(guān)文章:
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(考前必看)
★ 高一數(shù)學(xué)知識(shí)點(diǎn)匯總大全
★ 高一數(shù)學(xué)期末必考的知識(shí)點(diǎn)歸納
★ 高一數(shù)學(xué)必修一知識(shí)點(diǎn)匯總
★ 高一數(shù)學(xué)知識(shí)點(diǎn)小歸納
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納
★ 高一數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)公式總結(jié)
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)