初中數(shù)學中考知識重難點分析
初中數(shù)學中考知識重難點分析
適當練習大家都知道學習數(shù)學最重要的是練習,平時多做一些基礎題可以鍛煉解題熟練度,多做一些中檔題可以熟悉考試題型,過于困難的題目不建議大家多做,接下來小編為大家整理了初三數(shù)學學習相關內(nèi)容,一起來看看吧!
初中數(shù)學怎么學才能學好?
1、上課以及課前課后
同學們平時的學習時間是在課上,但是大家要樹立一個意識:課前課后也很重要。利用好這些時間,在配合適當?shù)膶W習方法,學好數(shù)學其實并不難。
課前:課前預習很重要,一方面可以先了解上課知識,課上能跟上老師思路,另一方面標記出自己不會的知識點,課上可以根據(jù)自己的情況側重去聽。
課上:課上45分鐘,大多數(shù)同學都很難保證整節(jié)課集中精神,這就要求我們課前一定要預習,找到自己不會的知識點,課上盡量理解吸收。還是希望大家課上盡量集中精神,跟隨老師的進度了解重點與難點,有利于復習。
課后:課后的時間一般用來復習,大家可以把自己沒有掌握的知識點復習一下,也可以對本節(jié)所學知識進行檢測與鞏固。如果課后復習還存在不理解的地方,大家一定要找老師和同學去問清楚。
有了課前課上課后三個階段,相信大家數(shù)學基礎基本差不多了,也希望大家繼續(xù)保持這個習慣。
2、提高作業(yè)效率
很多同學都跟學大君反映家庭作業(yè)太多,很多家長也覺得自己孩子壓力很大。孩子作業(yè)都沒時間完成,復習什么的更無從談起,導致學習成績不佳。但是家長和同學們有沒有想一想,每個人的課后時間都是一樣多的,為什么其他同學都可以完成,甚至還有很多學生利用課余時間報興趣班呢?
有可能是我們的效率不夠高。我可以問大家?guī)讉€問題,大家做作業(yè)的同時有沒有集中精力?有沒有玩手機或者吃零食?是不是中間還會休息一下,經(jīng)常走神?如果有這些情況,同學們還覺得是作業(yè)多嗎?是不是自己效率不夠高呢?
可能是同學們沒有進行上邊三步,導致自己做作業(yè)效率不高,最后怪罪到作業(yè)多上來。
其實這是一種非常不好的學習習慣,導致做作業(yè)效率不高,那么我們應該怎么提高做作業(yè)的效率呢?
幾個建議大家可以參考一下:
1端正態(tài)度
估計同學們都被老師說過:想要學習好,首先要擺出一個學習的態(tài)度來。這句話沒有錯,對待作業(yè),首先思想上要重視起來,養(yǎng)成一個良好的習慣。但是堅持一個好習慣是非常困難的,過程中很多同學容易產(chǎn)生放棄的念頭,還會產(chǎn)生負面情緒,但是大家要知道,一個好習慣是受益終生的,養(yǎng)成好習慣,問題越來越少,成績自然提高。
2集中精力
不要在寫作業(yè)的時候干其他的事或想其他事,一心不能二用。盡快地反作業(yè)做完了才能夠去做別的事情。
3學會總結
如果在看到題目后能很快反映出這題目所需要的知識點,那么做題速度就會提高,在做題之后也要總結一下思路。多總結一下會發(fā)現(xiàn)很多題目都有規(guī)律可循,這樣可以起到事半功倍的效果,以后再碰到類似問題時,就可以很輕松了。
4營造一個良好的學習環(huán)境
孩子寫作業(yè)時盡量保持安靜,書桌上除了放書、學習用品等之外,不要放其他的東西,以免分散他們的注意力。家長也不要過度的嘮叨和訓斥,要多鼓勵孩子。
3、適當練習大家都知道學習數(shù)學最重要的是練習,平時多做一些基礎題可以鍛煉解題熟練度,多做一些中檔題可以熟悉考試題型,過于困難的題目不建議大家多做,可以嘗試解決了解難度,掌握做題技巧,訓練不要盲目,不要鉆牛角尖。做題要學會總結,總結哪些題目經(jīng)常出現(xiàn),這可能是中考??碱}型。有的同學每天都在做題,輔導書用掉一堆卻沒有提高,這就是盲目做題沒有技巧,沒有總結。
同學們在做題時多關注一下解題思路、方法、技巧等,掌握做題思路,總結做題技巧,這對考試來說至關重要考試中時間最寶貴,掌握了好的思路、方法、技巧,不僅解題速度快,而且也不容易犯錯。
4、計算能力計算一直是數(shù)學的一個核心內(nèi)容,幾乎每一個數(shù)學問題都需要通過計算。那么,計算的準確率就顯得尤為重要了。想要提高數(shù)學成績,計算的準確率是一定要提高的。那么如何提高計算的準確率呢?這里我也同樣給出了幾條建議。
1強化學生的有意注意和良好的計算習慣
(1)仔細審題的習慣。拿到題目后認真審題,看清題目的要求,想明白過程中應該注意哪些問題。
(2)細心檢查的習慣。先從思路上檢查一遍看是否有遺漏,再將答案代回原來的問題驗算。若為計算題則仔細檢查每一個步驟。
(3)認真書寫的習慣。書寫要干凈整潔,這樣能使自己在做題時看清題目,避免
錯誤的發(fā)生。
2強化口算能力
任何計算都是以口算為基礎的,口算能力的高低,直接影響到學生其它運算能力的提高。要提高口算能力,首先要抓好口算的基本訓練,所以應當經(jīng)常性的進行一些口算的練習。
3速算巧算
平時在做計算的時候要注意運算技巧地運用,加快運算速度,特別是在分數(shù)計算的部分,有時候數(shù)字比較大比較多,通分將會很困難,這時可能把分母寫成乘積的形式將是一種更好的選擇。
4強化估算能力
很多的問題,特別是應用題,當看到問題后就能夠大概地去估計一下結果大概會是一個什么范圍的數(shù),有了這種估計能力之后,有時候發(fā)生計算錯誤就能夠一下子看出來。所以在做題之前我們也可以估計一下答案的范圍,如果算得的答案不在這個范圍,那就需要我們?nèi)z查了。
5合理利用一些數(shù)的性質(zhì)
比如說奇數(shù)乘以偶數(shù)一定是一個偶數(shù),各位數(shù)字和是3的倍數(shù)的數(shù)一定能被3整除等等性質(zhì),都可以幫助我們對運算是否準確做一些輔助的判斷。
說了這么多,總結起來其實也很簡單,只要堅持一個好的學習習慣,做好復習練習,那么數(shù)學學習就能夠事半功倍,學好數(shù)學自然也就不在話下。
5、建立錯題本俗話說,"一朝被蛇咬,十年怕井繩",可是同學們常會一次又一次地掉入相似甚至相同的"陷阱"里。因此,學大君建議大家在平時的做題中就要及時記錄錯題,更重要的是還要想一想為什么會錯、以后要特別注意哪些地方,這樣就能避免不必要的失分。畢竟,中考或者在平時考試當中是"分分必爭",一分也失不得。這樣 復習時,這個錯題本也就成了寶貴的復習資料。
初中數(shù)學中考知識重難點分析
1.函數(shù)(一次函數(shù)、反比例函數(shù)、二次函數(shù))中考占總分的15%左右。
特別是二次函數(shù)是中考的重點,也是中考的難點,在填空、選擇、解答題中均會出現(xiàn),且知識點多,題型多變。
而且一道解答題一般會在試卷最后兩題中出現(xiàn),一般二次函數(shù)的應用和二次函數(shù)的圖像、性質(zhì)及三角形、四邊形綜合題難度較大。有一定難度。
如果在這一環(huán)節(jié)掌握不好,將會直接影響代數(shù)的基礎,會對中考的分數(shù)會造成很大的影響。
2.整式、分式、二次根式的化簡運算
整式的運算、因式分解、二次根式、科學計數(shù)法及分式化簡等都是初中學習的重點,它貫穿于整個初中數(shù)學的知識,是我們進行數(shù)學運算的基礎,其中因式分解及理解因式分解和整式乘法運算的關系、分式的運算是難點。
中考一般以選擇、填空形式出現(xiàn),但卻是解答題完整解答的基礎。運算能力的熟練程度和答題的正確率有直接的關系,掌握不好,答題正確率就不會很高,進而后面的的方程、不等式、函數(shù)也無法學好。
3.應用題,中考中占總分的30%左右
包括方程(組)應用,一元一次不等式(組)應用,函數(shù)應用,解三角形應用,概率與統(tǒng)計應用幾種題型。
一般會出現(xiàn)二至三道解答題(30分左右)及2—3道選擇、填空題(10分—15分),占中考總分的30%左右。
現(xiàn)在中考對數(shù)學實際應用的考察會越來越多,數(shù)學與生活聯(lián)系越來越緊密,應用題要求學生的理解辨別能力很強,能從問題中讀出必要的數(shù)學信息,并從數(shù)學的角度尋求解決問題的策略和方法。方程思想、函數(shù)思想、數(shù)形結合思想也是中學階段一種很重要的數(shù)學思想、是解決很多問題的工具。
4.三角形(全等、相似、角平分線、中垂線、高線、解直角三角形)、四邊形(平行四邊形、矩形、菱形、正方形),中考中占總分25%左右。
三角形是初中幾何圖形中內(nèi)容最多的一塊知識,也是學好平面幾何的必要基礎,貫穿初二到到初三的幾何知識,其中的幾何證明題及線段長度和角度的計算對很多學生是難點。
只有學好了三角形,后面的四邊形乃至圓的證明就容易理解掌握了,反之,后面的一切幾何證明更將無從下手,沒有清晰的思路。
其中解三角形在初三下冊學習,是以直角三角形為基礎的,在中考中會以船的觸礁、樓高、影子問題出現(xiàn)一道大題。因此在初中數(shù)學學習中也是一個重點。
四邊形在初二進行學習的,其中特殊四邊形的性質(zhì)及判定定理很多,容易混淆,深刻理解這些性質(zhì)和判定、理清它們之間的聯(lián)系是解決證明和計算的基礎,四邊形中題型多變,計算、證明都有一定難度。經(jīng)常在中考選擇題、填空題及解答題的壓軸題(最后一題)中出現(xiàn),對學生綜合運用知識的能力要求較高。
5.圓,中考中占總分的10%左右
包括圓的基本性質(zhì),點、直線與圓位置關系,圓心角與圓周角,切線的性質(zhì)和判定,扇形弧長及面積,這章節(jié)知識是在初三學習的。
其中切線的性質(zhì)和判定、圓中的基本性質(zhì)的理解和運用、直線與圓的位置關系、圓中的一些線段長度及角度的計算是重點也是難點。