特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學習啦>學習方法>小學學習方法>六年級方法>六年級數學>

六年級數學下冊知識點2022

時間: 舒淇4599 分享

小學六年級數學知識是比較難的,除了上課要認真聽,課后更要主動復習和鞏固學過的知識。下面小編為大家?guī)砹昙墧祵W下冊知識點2022,希望對您有所幫助!

六年級數學下冊知識點

1.1整數和整除的意義

1.在數物體的時候,用來表示物體個數的數1,2,3,4,5,,叫做整數

2.在正整數1,2,3,4,5,,的前面添上號,得到的數1,2,3,4,5,,叫做負整數

3.零和正整數統(tǒng)稱為自然數

4.正整數、負整數和零統(tǒng)稱為整數

5.整數a除以整數b,如果除得的商正好是整數而沒有余數,我們就說a能被b整除,或者說b能整除a。

1.2因數和倍數

1.如果整數a能被整數b整除,a就叫做b倍數,b就叫做a的因數

3.一個數的因數的個數是有限的,其中最小的因數是1,最大的因數是它本身

4.一個數的倍數的個數是無限的,其中最小的倍數是它本身

1.3能被2,5整除的數

1.個位數字是0,2,4,6,8的數都能被2整除

3.在正整數中(除1外),與奇數相鄰的兩個數是偶數

4.在正整數中,與偶數相鄰的兩個數是奇數

5.個位數字是0,5的數都能被5整除

6.0是偶數

1.4素數、合數與分解素因數

1.只含有因數1及本身的整數叫做素數或質數

2.除了1及本身還有別的因數,這樣的數叫做合數

3.1既不是素數也不是合數

4.奇數和偶數統(tǒng)稱為正整數,素數、合數和1統(tǒng)稱為正整數

5.每個合數都可以寫成幾個素數相乘的形式,這幾個素數都叫做這個合數的素因數

6.把一個合數用素因數相乘的形式表示出來,叫做分解素因數。

7.通常用什么方法分解素因數:樹枝分解法,短除法

1.5公因數與最大公因數

1.幾個數公有的因數,叫做這幾個數的公因數,其最大的一個叫做這幾個數的最大公因數

2.如果兩個數中,較小數是較大數的因數,那么這兩個數的最大公因數較小的數

3.如果兩個數是互素數,那么這兩個數的最大公因數是

6年級數學下冊知識點

1.負數:負數是數學術語,指小于0的實數,如3。

任何正數前加上負號都等于負數。在數軸線上,負數都在0的左側,所有的負數都比自然數小。負數用負號“-”標記,如2,5.33,45,0.6等。

2.正數:大于0的數叫正數(不包括0)

若一個數大于零(>0),則稱它是一個正數。正數的前面可以加上正號“+”來表示。正數有無數個,其中分正整數,正分數和正無理數。

3.正數的幾何意義:數軸上0右邊的數叫做正數

4.數軸:規(guī)定了原點,正方向和單位長度的直線叫數軸。

所有的實數都可以用數軸上的點來表示。也可以用數軸來比較兩個實數的大小。

5.數軸的三要素:原點、單位長度、正方向。

6.圓柱:以矩形的一邊所在直線為旋轉軸,其余三邊旋轉形成的.面所圍成的旋轉體

即AG矩形的一條邊為軸,旋轉360°所得的幾何體就是圓柱。

其中AG叫做圓柱的軸,AG的長度叫做圓柱的高,所有平行于AG的線段叫做圓柱的母線,DA和D'G旋轉形成的兩個圓叫做圓柱的底面,DD'旋轉形成的曲面叫做圓柱的側面。

7.圓柱的體積:圓柱所占空間的大小,叫做這個圓柱體的體積。設一個圓柱底面半徑為r,高為h,則體積V:V=πr2h;如S為底面積,高為h,體積為V:V=Sh

8.圓柱的側面積:圓柱的側面積=底面的周長x高,S側=Ch(注:c為πd)

圓柱的兩個圓面叫做底面(又分上底和下底);圓柱有一個曲面,叫做側面;兩個底面之間的距離叫做高(高有無數條)。

特征:圓柱的底面都是圓,并且大小一樣。

9.圓錐解析幾何定義:圓錐面和一個截它的平面(滿足交線為圓)組成的空間幾何圖形叫圓錐。

10.圓錐立體幾何定義:以直角三角形的一條直角邊所在直線為旋轉軸,其余兩邊旋轉形成的面所圍成的旋轉體叫做圓錐。該直角邊叫圓錐的軸。

11.圓錐的體積:一個圓錐所占空間的大小,叫做這個圓錐的體積。一個圓錐的體積等于與它等底等高的圓柱的體積的1/3。

根據圓柱體積公式V=Sh(V=rrπh),得出圓錐體積公式:V=1/3Sh

S是圓錐的底面積,h是圓錐的高,r是圓錐的底面半徑

12.圓錐體展開圖的'繪制:圓錐體展開圖由一個扇形(圓錐的側面)和一個圓(圓錐的底面)組成。(如右圖)在繪制指定圓錐的展開圖時,一般知道a(母線長)和d(底面直徑)

13.圓錐的表面積:一個圓錐表面的面積叫做這個圓錐的表面積。

圓錐的表面積由側面積和底面積兩部分組成。

S=πR2(n/360)+πr2或(1/2)αR2+πr2(此n為角度制,α為弧度制,α=π(n/180)

14.圓柱與圓錐的關系:與圓柱等底等高的圓錐體積是圓柱體積的三分之一。

體積和高相等的圓錐與圓柱(等低等高)之間,圓錐的底面積是圓柱的三倍。

體積和底面積相等的圓錐與圓柱(等低等高)之間,圓錐的高是圓柱的三倍。

底面積和高不相等的圓柱圓錐不相等。

15.生活中的圓錐:生活中經常出現的圓錐有:沙堆、漏斗、帽子。圓錐在日常生活中也是不可或缺的。

六年級數學下冊知識點總結

一、圓柱

1、圓柱的形成:圓柱是以長方形的一邊為軸旋轉而得的。

圓柱也可以由長方形卷曲而得到。

兩種方式:

1、以長方形的長為底面周長,寬為高;

2、以長方形的寬為底面周長,長為高。

其中,第一種方式得到的圓柱體體積較大。

2、圓柱的高是兩個底面之間的距離,一個圓柱有無數條高,他們的數值是相等的

3、圓柱的特征:

(1)底面的特征:圓柱的底面是完全相等的兩個圓。

(2)側面的特征:圓柱的側面是一個曲面。

(3)高的特征:圓柱有無數條高

4、圓柱的切割:

①橫切:切面是圓,表面積增加2倍底面積,即S增=2πr?0?5

②豎切(過直徑):切面是長方形(如果h=2R,切面為正方形),該長方形的長是圓柱的高,寬是圓柱的底面直徑,表面積增加兩個長方形的面積,即S增=4rh

5、圓柱的側面展開圖:

①沿著高展開,展開圖形是長方形,如果h=2πr,則展開圖形為正方形

②不沿著高展開,展開圖形是平行四邊形或不規(guī)則圖形

③無論怎么展開都得不到梯形

圓柱變形記,圓柱怎么變形成長方體?與長方體又有什么聯系?怎么借助長方體的體積計算圓柱的體積?

6、圓柱的相關計算公式:

底面積:S底=πr?0?5

底面周長:C底=πd=2πr

側面積:S側=2πrh

表面積:S表=2S底+S側=2πr?0?5+2πrh

體積:V柱=πr?0?5h

考試常見題型:

①已知圓柱的底面積和高,求圓柱的側面積,表面積,體積,底面周長

②已知圓柱的底面周長和高,求圓柱的側面積,表面積,體積,底面積

③已知圓柱的底面周長和體積,求圓柱的側面積,表面積,高,底面積

④已知圓柱的底面面積和高,求圓柱的側面積,表面積,體積

⑤已知圓柱的側面積和高,求圓柱的底面半徑,表面積,體積,底面積

以上幾種常見題型的解題方法,通常是求出圓柱的底面半徑和高,再根據圓柱的相關計算公式進行計算

無蓋水桶的表面積=側面積+一個底面積油桶的表面積=側面積+兩個底面積

煙囪通風管的表面積=側面積

只求側面積:燈罩、排水管、漆柱、通風管、壓路機、衛(wèi)生紙中軸、薯片盒包裝

側面積+一個底面積:玻璃杯、水桶、筆筒、帽子、游泳

側面積+兩個底面積:油桶、米桶、罐桶類

二、圓錐

1、圓錐的形成:圓錐是以直角三角形的一直角邊為軸旋轉而得到的。圓錐也可以由扇形卷曲而得到。

2、圓錐的高是兩個頂點與底面之間的距離,與圓柱不同,圓錐只有一條高

3、圓錐的特征:

(1)底面的特征:圓錐的底面一個圓。

(2)側面的特征:圓錐的側面是一個曲面。

(3)高的特征:圓錐有一條高。

4、圓錐的切割:

①橫切:切面是圓

②豎切(過頂點和直徑直徑):切面是等腰三角形,該等腰三角形的高是圓錐的高,底是圓錐的底面直徑,面積增加兩個等腰三角形的面積,即S增=2rh

5、圓錐的相關計算公式:

底面積:S底=πr?0?5

底面周長:C底=πd=2πr

體積:V錐=1/3πr?0?5h

考試常見題型:

①已知圓錐的底面積和高,求體積,底面周長

②已知圓錐的底面周長和高,求圓錐的體積,底面積

③已知圓錐的底面周長和體積,求圓錐的高,底面積

以上幾種常見題型的解題方法,通常是求出圓錐的底面半徑和高,再根據圓柱的相關計算公式進行計算

圓柱和圓錐的關系

1、圓柱與圓錐等底等高,圓柱的體積是圓錐的3倍。

2、圓柱與圓錐等底等體積,圓錐的高是圓柱的3倍。

3、圓柱與圓錐等高等體積,圓錐的底面積(注意:是底面積而不是底面半徑)是圓柱的3倍。

4、圓柱與圓錐等底等高,體積相差2/3Sh

1608730