初一數學必須掌握的知識點
數學是人類對事物的抽象結構與模式進行嚴格描述、推導的一種通用手段,可以應用于現實世界的任何問題,所有的數學對象本質上都是人為定義的。下面小編為大家?guī)沓跻粩祵W必須掌握的知識點,希望大家喜歡!
初一數學必須掌握的知識點
第一章
1.1 正數與負數
在以前學過的0以外的數前面加上負號“-”的數叫負數(negative number)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上“+”)。
1.2 有理數
正整數、0、負整數統(tǒng)稱整數(integer),正分數和負分數統(tǒng)稱分數(fraction)。
整數和分數統(tǒng)稱有理數(rational number)。
通常用一條直線上的點表示數,這條直線叫數軸(number axis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
1.3 有理數的加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,并把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等于加這個數的相反數。
1.4 有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,并把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等于0的數,等于乘這個數的倒數。
兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0。 mì
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大于10的數表示成a×10的n次方的形式,使用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant digit)。
七年級上冊數學知識點總結
相反數
⒈相反數
只有符號不同的兩個數叫做互為相反數,其中一個是另一個的相反數,0的相反數是0。
注意:⑴相反數是成對出現的;⑵相反數只有符號不同,若一個為正,則另一個為負;
⑶0的相反數是它本身;相反數為本身的數是0。
2.相反數的性質與判定
⑴任何數都有相反數,且只有一個;
⑵0的相反數是0;
⑶互為相反數的兩數和為0,和為0的兩數互為相反數,即a,b互為相反數,則a+b=0
3.相反數的幾何意義
在數軸上與原點距離相等的兩點表示的兩個數,是互為相反數;互為相反數的兩個數,在數軸上的對應點(0除外)在原點兩旁,并且與原點的距離相等。0的相反數對應原點;原點表示0的相反數。說明:在數軸上,表示互為相反數的兩個點關于原點對稱。
4.相反數的求法
⑴求一個數的相反數,只要在它的前面添上負號“-”即可求得(如:5的相反數是-5);
⑵求多個數的和或差的相反數時,要用括號括起來再添“-”,然后化簡(如;5a+b的相反數是-(5a+b)。化簡得-5a-b);
⑶求前面帶“-”的單個數,也應先用括號括起來再添“-”,然后化簡(如:-5的相反數是-(-5),化
簡得5)
5.相反數的表示方法
⑴一般地,數a的相反數是-a,其中a是任意有理數,可以是正數、負數或0。
當a>0時,-a<0(正數的相反數是負數)
當a<0時,-a>0(負數的相反數是正數)
當a=0時,-a=0,(0的相反數是0)
初中數學合理學習計劃
一、指導思想
做好高一數學復習課教學,對大面積提高教學質量起著重要作用。高一數學期末復習應達到以下目的:
使所學知識系統(tǒng)化、結構化、讓學生將一學期來的數學知識連成一個有機整體,更利于學生理解;
少講多練,鞏固基本技能;
抓好方法教學,歸納、總結解題方法;
做好綜合題訓練,提高學生綜合運用知識分析問題的能力。
二、明確復習范圍及重點
范圍:必修1與必修4
重點:必修1:函數的基本性質,指數函數,對數函數;必修4:三角函數,平面向量。
三、復習要求
1、重點復習掌握核心概念、基礎知識、強調作圖、解題規(guī)范;
2、圍繞綜合卷加強對差生的個別輔導、面批,爭取提高合格率。
四、復習要點:
掌握各章知識結構和要點、知識點、澄清概念、解決疑難問題。
習題歸類,解題思路、方法,從解題中對知識加深理解、掌握,提高分析問題,解決問題的能力。
初一數學必須掌握的知識點相關文章:
初一數學必須掌握的知識點




