初中數(shù)學必背知識點總結歸納
初中數(shù)學必背知識點總結歸納(一覽)
知識點就是一些課本中常考的內(nèi)容,或者考試經(jīng)常出題的地方。為了幫助大家更高效的學習,以下是小編整理的一些初中數(shù)學必背知識點總結歸納,歡迎閱讀參考。
初中數(shù)學知識點歸納
方差是實際值與期望值之差平方的期望值,而標準差是方差算術平方根。 在實際計算中,我們用以下公式計算方差。
方差是各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),即s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2],其中,x_表示樣本的平均數(shù),n表示樣本的數(shù)量,xn表示個體,而s^2就表示方差。
而當用(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]作為樣本X的方差的估計時,發(fā)現(xiàn)其數(shù)學期望并不是X的方差,而是X方差的(n-1)/n倍,[1/(n-1)][(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]的數(shù)學期望才是X的方差,用它作為X的方差的估計具有“無偏性”,所以我們總是用[1/(n-1)]∑(xi-X~)^2來估計X的方差,并且把它叫做“樣本方差”。
方差,通俗點講,就是和中心偏離的程度!用來衡量一批數(shù)據(jù)的波動大小(即這批數(shù)據(jù)偏離平均數(shù)的大小)并把它叫做這組數(shù)據(jù)的方差。記作S。 在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動越大,越不穩(wěn)定。
定義 設X是一個隨機變量,若E{[X-E(X)]^2}存在,則稱E{[X-E(X)]^2}為X的方差,記為D(X),Var(X)或DX。
即D(X)=E{[X-E(X)]^2}稱為方差,而σ(X)=D(X)^0.5(與X有相同的量綱)稱為標準差(或均方差)。即用來衡量一組數(shù)據(jù)的離散程度的統(tǒng)計量。
方差刻畫了隨機變量的取值對于其數(shù)學期望的離散程度。(標準差.方差越大,離散程度越大。否則,反之)
若X的取值比較集中,則方差D(X)較小
若X的取值比較分散,則方差D(X)較大。
因此,D(X)是刻畫X取值分散程度的一個量,它是衡量X取值分散程度的一個尺度。
計算 由定義知,方差是隨機變量 X 的函數(shù)
g(X)=∑[X-E(X)]^2 pi
數(shù)學期望。即:
由方差的定義可以得到以下常用計算公式:
D(X)=∑xipi-E(x)
D(X)=∑(xipi+E(X)pi-2xipiE(X))
=∑xipi+∑E(X)pi-2E(X)∑xipi
=∑xipi+E(X)-2E(X)
=∑xipi-E(x)
方差其實就是標準差的平方。
關于初中數(shù)學常見知識點總結
一、平行四邊形的定義、性質(zhì)及判定
1、兩組對邊平行的四邊形是平行四邊形。
2、性質(zhì):
(1)平行四邊形的對邊相等且平行
(2)平行四邊形的對角相等,鄰角互補
(3)平行四邊形的對角線互相平分
3、判定:
(1)兩組對邊分別平行的四邊形是平行四邊形
(2)兩組對邊分別相等的四邊形是平行四邊形
(3)一組對邊平行且相等的四邊形是平行四邊形
(4)兩組對角分別相等的四邊形是平行四邊形
(5)對角線互相平分的四邊形是平行四邊形
4、對稱性:平行四邊形是中心對稱圖形
二、矩形的定義、性質(zhì)及判定
1、定義:有一個角是直角的平行四邊形叫做矩形
2、性質(zhì):矩形的四個角都是直角,矩形的對角線相等
3、判定:
(1)有一個角是直角的平行四邊形叫做矩形
(2)有三個角是直角的四邊形是矩形
(3)兩條對角線相等的平行四邊形是矩形
4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。
三、菱形的定義、性質(zhì)及判定
1、定義:有一組鄰邊相等的平行四邊形叫做菱形
(1)菱形的四條邊都相等
(2)菱形的對角線互相垂直,并且每一條對角線平分一組對角
(3)菱形被兩條對角線分成四個全等的直角三角形
(4)菱形的面積等于兩條對角線長的積的一半
2、s菱=爭6(n、6分別為對角線長)
3、判定:
(1)有一組鄰邊相等的平行四邊形叫做菱形
(2)四條邊都相等的四邊形是菱形
(3)對角線互相垂直的平行四邊形是菱形
4、對稱性:菱形是軸對稱圖形也是中心對稱圖形
初中數(shù)學必考的知識點總結
1、不在同一直線上的三點確定一個圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3、圓是以圓心為對稱中心的中心對稱圖形
4、圓是定點的距離等于定長的點的集合
5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
6、圓的外部可以看作是圓心的距離大于半徑的點的集合
7、同圓或等圓的半徑相等
8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11、定理:圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
12、①直線L和⊙O相交d
②直線L和⊙O相切d=r
③直線L和⊙O相離d>r
13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑
15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
16、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
18、圓的外切四邊形的兩組對邊的和相等,外角等于內(nèi)對角
19、如果兩個圓相切,那么切點一定在連心線上
20、①兩圓外離d>R+r
②兩圓外切d=R+r
③兩圓相交R-rr)
④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)