特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 各學(xué)科學(xué)習(xí)方法 > 數(shù)學(xué)學(xué)習(xí)方法 > 做數(shù)學(xué)題的技巧與提速方法

做數(shù)學(xué)題的技巧與提速方法

時(shí)間: 慧良1230 分享

做數(shù)學(xué)題的技巧與提速方法

  俗話說,“知識(shí)不夠、技巧來湊。”雖說全憑技巧拿分,不是長久之計(jì)。但在某些關(guān)鍵時(shí)候,技巧還是超級(jí)有效的!小編整理了相關(guān)知識(shí)點(diǎn),快來學(xué)習(xí)學(xué)習(xí)吧!

  做數(shù)學(xué)題的9個(gè)技巧

  1.圓錐曲線中最后題往往聯(lián)立起來很復(fù)雜導(dǎo)致k算不出,這時(shí)你可以取特殊值法強(qiáng)行算出k過程就是先聯(lián)立,后算代爾塔,用下偉達(dá)定理,列出題目要求解的表達(dá)式,就ok了。

  2.選擇題中如果有算錐體體積和表面積的話,直接看選項(xiàng)面積找到差2倍的小的就是答案,體積找到差3倍的小的就是答案,屢試不爽!

  3.三角函數(shù)第二題,如求a(cosB+cosC)/(b+c)coA之類的先邊化角然后把第一題算的比如角A等于60度直接假設(shè)B和C都等于60°帶入求解。省時(shí)省力!

  4.空間幾何證明過程中有一步實(shí)在想不出把沒用過的條件直接寫上然后得出想不出的那個(gè)結(jié)論即可。如果第一題真心不會(huì)做直接寫結(jié)論成立則第二題可以直接用!用常規(guī)法的同學(xué)建議先隨便建立個(gè)空間坐標(biāo)系,做錯(cuò)了還有2分可以得!

  5.立體幾何中第二問叫你求余弦值啥的一般都用坐標(biāo)法!如果求角度則常規(guī)法簡單!

  6.選擇題中考線面關(guān)系的可以先從D項(xiàng)看起,前面都是來浪費(fèi)你時(shí)間的。

  7.選擇題中求取值范圍的直接觀察答案從每個(gè)選項(xiàng)中取與其他選項(xiàng)不同的特殊點(diǎn)帶入能成立的就是答案。

  8.線性規(guī)劃題目直接求交點(diǎn)帶入比較大小即可。

  9.遇到這樣的選項(xiàng) A.1/2 B.1 C.3/2 D.5/2 這樣的話答案一般是D因?yàn)锽可以看作是2/2 前面三個(gè)都是出題者湊出來的,如果答案在前面3個(gè)的話,D應(yīng)該是2(4/2)。

  怎么樣?看完上邊幾個(gè)技巧,是不是覺得自己的數(shù)學(xué)拿分能力“突突”猛增?

  不過,想在不會(huì)的情況下再多拿一些分,還需要在大題上多懂得技巧、多多拿分。

  大題文科第一題一般是三角函數(shù)題。

  第一步一般都是需要將三角函數(shù)化簡成標(biāo)準(zhǔn)形式Asin(ωx+φ)+c

  接下來按題做就行了,注意二倍角的降冪作用以及輔助角(合一)公式,周期公式,對(duì)稱軸、對(duì)稱中心、單調(diào)區(qū)間、最大值、最小值都是用整體法求解。求最值時(shí)通過自變量的范圍推到里面整體u=ωx+φ 的范圍,然后可以直接畫sinu的圖像,避免畫平移的圖像。

  這部分題還有一種就是解三角形的問題。運(yùn)用正弦定理、余弦定理、面積公式,通常有兩個(gè)方向,即角化成邊和邊化成角,得根據(jù)具體問題具體分析哪個(gè)方便一些,遇到復(fù)雜的題就把未知量列成未知數(shù),根據(jù)定理列方程組,然后解方程組即可。

  理科如果考數(shù)列題的話,注意等差、等比數(shù)列通項(xiàng)公式、前n項(xiàng)和公式;

  證明數(shù)列是等差或等比直接用定義法(后項(xiàng)減前項(xiàng)為常數(shù)/后項(xiàng)比前項(xiàng)為常數(shù)),求數(shù)列通項(xiàng)公式,如為等差或等比直接代公式即可,其它的一般注意類型采用不同的方法(已知Sn求an、已知Sn與an關(guān)系求an(前兩種都是利用an=Sn-Sn-1,注意討論n=1、n>1),

  累加法、累乘法、構(gòu)造法(所求數(shù)列本身不是等差或等比,需要將所求數(shù)列適當(dāng)變形構(gòu)造成新數(shù)列l(wèi)amt,通過構(gòu)造一個(gè)新數(shù)列使其為等差或等比,便可求其通項(xiàng),再間接求出所求數(shù)列通項(xiàng));

  數(shù)列的求和第一步要注意通項(xiàng)公式的形式,然后選擇合適的方法(直接法、分組求和法、裂項(xiàng)相消法、錯(cuò)位相減法、倒序相加法等)進(jìn)行求解。如有其它問題,注意放縮法證明,還有就是數(shù)列可以看成一個(gè)以n為自變量的函數(shù)。

  第二題是立體幾何題,證明題注意各種證明類型的方法(判定定理、性質(zhì)定理),注意引輔助線,一般都是對(duì)角線、中點(diǎn)、成比例的點(diǎn)、等腰等邊三角形中點(diǎn)等等,理科其實(shí)證明不出來直接用向量法也是可以的。計(jì)算題主要是體積,注意將字母換位(等體積法);

  線面距離用等體積法。理科還有求二面角、線面角等,用建立空間坐標(biāo)系的方法(向量法)比較簡單,注意各個(gè)點(diǎn)的坐標(biāo)的計(jì)算,不要算錯(cuò)。

  第三題是概率與統(tǒng)計(jì)題,主要有頻率分布直方圖,注意縱坐標(biāo)(頻率/組距)。求概率的問題,文科列舉,然后數(shù)數(shù),別數(shù)錯(cuò)、數(shù)少了啊,概率=滿足條件的個(gè)數(shù)/所有可能的個(gè)數(shù);

  理科用排列組合算數(shù)。獨(dú)立性檢驗(yàn)根據(jù)公式算K方值,別算錯(cuò)數(shù)了,會(huì)查表,用1減查完的概率?;貧w分析,根據(jù)數(shù)據(jù)代入公式(公式中各項(xiàng)的意義)即可求出直線方程,注意(x平均,y平均)點(diǎn)滿足直線方程。理科還有隨機(jī)變量分布列問題,注意列表時(shí)把可能取到的所有值都列出,別少了,然后分別算概率,最后檢查所有概率和是否是1,不是1說明要不你概率算錯(cuò)了,要不隨機(jī)變量數(shù)少了。

  第四題是函數(shù)題,第一步別忘了先看下定義域,一般都得求導(dǎo),求單調(diào)區(qū)間時(shí)注意與定義域取交??纯搭}型,將題型轉(zhuǎn)化一下,轉(zhuǎn)化到你學(xué)過的內(nèi)容(利用導(dǎo)數(shù)判斷單調(diào)性(含參數(shù)時(shí)要利用分類討論思想,一般求導(dǎo)完通分完分子是二次函數(shù)的比較多,討論開口a=0、a<;0、a>;0和后兩種情況下δ<;=0、δ>;0)

  求極值(根據(jù)單調(diào)區(qū)間列表或畫圖像簡圖)、求最值(所有的極值點(diǎn)與兩端點(diǎn)值比較)等),典型的有恒成立問題、存在問題(注意與恒成立問題的區(qū)別),不管是什么都要求函數(shù)的最大值或最小值,注意方法以及比較定義域端點(diǎn)值,注意函數(shù)圖象(數(shù)形結(jié)合思想:求方程的根或解、曲線的交點(diǎn)個(gè)數(shù))的運(yùn)用。

  證明有關(guān)的問題可以利用證明的各種方法(綜合法、分析法、反證法、理科的數(shù)學(xué)歸納法)。多問的時(shí)候注意后面的問題一般需要用到前面小問的結(jié)論。抽象的證明問題別光用眼睛在那看,得設(shè)出里面的未知量,通過設(shè)而不求思想證明問題。

  第五題是圓錐曲線題,第一問求曲線方程,注意方法(定義法、待定系數(shù)法、直接求軌跡法、反求法、參數(shù)方程法等等)。一定檢查下第一問算的數(shù)對(duì)不,要不如果算錯(cuò)了第二問做出來了也白算了。

  第二問有直線與圓錐曲線相交時(shí),記住“聯(lián)立完事用聯(lián)立”,第一步聯(lián)立,根據(jù)韋達(dá)定理得出兩根之和、兩根之差、因一般都是交于兩點(diǎn),注意驗(yàn)證判別式>;0,設(shè)直線時(shí)注意討論斜率是否存在。

  第二步也是最關(guān)鍵的就是用聯(lián)立,關(guān)鍵是怎么用聯(lián)立,即如何將題里的條件轉(zhuǎn)化成你剛才聯(lián)立完的x1+x2和x1x2,然后將結(jié)果代入即可,通常涉及的題型有

  弦長問題(代入弦長公式)、

  定比分點(diǎn)問題(根據(jù)比例關(guān)系建立三點(diǎn)坐標(biāo)之間的一個(gè)關(guān)系式(橫坐標(biāo)或縱坐標(biāo)),再根據(jù)根與系數(shù)的關(guān)系建立圓錐曲線上的兩點(diǎn)坐標(biāo)的兩個(gè)關(guān)系式,從這三個(gè)關(guān)系式入手解決)、

  點(diǎn)對(duì)稱問題(利用兩點(diǎn)關(guān)于直線對(duì)稱的兩個(gè)條件,即這兩點(diǎn)的連線與對(duì)稱軸垂直和這兩點(diǎn)的中點(diǎn)在對(duì)稱軸上)、

  定點(diǎn)問題(直線y=kx+b過定點(diǎn)即找出k與b的關(guān)系,如b=5k+7,然后將b代入到直線方程y=kx+5k+7=k(x+5)+7即可找出定點(diǎn)(-5,7))、

  定值問題(基本思想是函數(shù)思想,將要證明或要求解的量表示為某個(gè)合適變量(斜率、截距或坐標(biāo))的函數(shù),通過適當(dāng)化簡,消去變量即得定值。)、

  最值或范圍問題(基本思想還是函數(shù)思想,將要求解的量表示為某個(gè)合適變量(斜率、截距或坐標(biāo))的函數(shù),利用函數(shù)求值域的方法(首先要求變量的范圍即定義域—別忘了delt>;0,然后運(yùn)用求值域的各種方法—直接法、換元法、圖像法、導(dǎo)數(shù)法、均值不等式法(注意驗(yàn)證“=”)等)求出最值(最大、最小),即范圍也求出來了)。

  抽象的證明問題別光用眼睛在那看,得設(shè)出里面的未知量,通過設(shè)而不求思想證明問題。

  解題速度提高10倍的方法

  熟悉習(xí)題中所涉及的內(nèi)容,包括定義、公式、定理和規(guī)則

  解題、做練習(xí)只是學(xué)習(xí)過程中的一個(gè)環(huán)節(jié),而不是學(xué)習(xí)的全部,你不能為解題而解題。解題是為閱讀服務(wù)的,是檢查你是否讀懂了教科書,是否深刻理解了其中的概念、定理、公式和規(guī)則,能否利用這些概念、定理、公式和規(guī)則解決實(shí)際問題。解題時(shí),我們的概念越清晰,對(duì)公式、定理和規(guī)則越熟悉,解題速度就越快。

  因此,我們?cè)诮忸}之前,應(yīng)通過閱讀教科書和做簡單的練習(xí),先熟悉、記憶和辨別這些基本內(nèi)容,正確理解其涵義的本質(zhì),接著馬上就做后面所配的練習(xí),一刻也不要停留。

  熟悉習(xí)題中所涉及到的以前學(xué)過的知識(shí),以及與其他學(xué)科相關(guān)的知識(shí)

  有時(shí)候,我們遇到一道不會(huì)做的習(xí)題,不是我們沒有學(xué)會(huì)現(xiàn)在所要學(xué)會(huì)的內(nèi)容,而是要用到過去已經(jīng)學(xué)過的一個(gè)公式,而我們卻記得不很清楚了;或是需用到一個(gè)特殊的定理,而我們卻從未學(xué)過,這樣就使解題速度大為降低。

  這時(shí),我們應(yīng)先補(bǔ)充一些必須補(bǔ)充的相關(guān)知識(shí),弄清楚與題目相關(guān)的概念、公式或定理,然后再去解題,否則就是浪費(fèi)時(shí)間,當(dāng)然,解題速度就更無從談起了。

  熟悉基本的解題步驟和解題方法

  解題的過程,是一個(gè)思維的過程。對(duì)一些基本的、常見的問題,前人已經(jīng)總結(jié)出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習(xí)題的答案。否則,走了彎路就多花了時(shí)間。

  認(rèn)真做好歸納總結(jié)

  在解過一定數(shù)量的習(xí)題之后,對(duì)所涉及到的知識(shí)、解題方法進(jìn)行歸納總結(jié),以便使解題思路更為清晰,就能達(dá)到舉一反三的效果,對(duì)于類似的習(xí)題一目了然,可以節(jié)約大量的解題時(shí)間。

  先易后難,逐步增加習(xí)題的難度

  人們認(rèn)識(shí)事物的過程都是從簡單到復(fù)雜。簡單的問題解多了,從而使概念清晰了,對(duì)公式、定理以及解題步驟熟悉了,解題時(shí)就會(huì)形成跳躍性思維,解題的速度就會(huì)大大提高。養(yǎng)成了習(xí)慣,遇到一般的難題,同樣可以保持較高的解題速度。有些學(xué)生不太重視這些基本的、簡單的習(xí)題,認(rèn)為沒有必要花費(fèi)時(shí)間去解這些簡單的習(xí)題,結(jié)果是概念不清,公式、定理及解題步驟不熟,遇到稍難一些的題,就束手無策,解題速度就更不用說了。

  其實(shí),解簡單容易的習(xí)題,并不一定比解一道復(fù)雜難題的勞動(dòng)強(qiáng)度和效率低。比如,與一個(gè)人扛一大袋大米上五層樓相比,一個(gè)人拎一個(gè)小提包也上到五層樓當(dāng)然要輕松得多。但是,如果扛米的人只上一次,而拎包的人要來回上下50次、甚至100次,那么,拎包人比扛米人的勞動(dòng)強(qiáng)度大。所以在相同時(shí)間內(nèi),解50道、100道簡單題,可能要比解一道難題的勞動(dòng)強(qiáng)度大。

  由此可見,去解一道難以解出的難題,不如去解30道稍微簡單一些的習(xí)題,其收獲也許會(huì)更大。因此,我們?cè)趯W(xué)習(xí)時(shí),應(yīng)根據(jù)自己的能力,先去解那些看似簡單,卻很重要的習(xí)題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會(huì)達(dá)到事半功倍的效果。

  認(rèn)真、仔細(xì)地審題

  對(duì)于一道具體的習(xí)題,解題時(shí)最重要的環(huán)節(jié)是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應(yīng)特別注意每一句話的內(nèi)在涵義,并從中找出隱含條件。讀題一旦結(jié)束,哪些是已知條件?求解的結(jié)論是什么?還缺少哪些條件,可否從已知條件中推出?在你的腦海里,這些信息就應(yīng)該已經(jīng)結(jié)成了一張網(wǎng),并有了初步的思路和解題方案,然后就是根據(jù)自己的思路,演算一遍,加以驗(yàn)證。

  有些學(xué)生沒有養(yǎng)成讀題、思考的習(xí)慣,心里著急,匆匆一看,就開始解題,結(jié)果常常是漏掉了一些信息,花了很長時(shí)間解不出來,還找不到原因,想快卻慢了。很多時(shí)候?qū)W生問問題的時(shí)候,老師和他一起讀題,讀到一半時(shí),他說:“老師,我會(huì)了。”所以,在實(shí)際解題時(shí),應(yīng)特別注意,審題要認(rèn)真、仔細(xì)。

  學(xué)會(huì)畫圖

  畫圖是一個(gè)翻譯的過程。讀題時(shí),若能根據(jù)題義,把對(duì)數(shù)學(xué)(或其他學(xué)科)語言的理解,畫成分析圖,就使題目變得形象、直觀。這樣就把解題時(shí)的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關(guān)系就變得一目了然。尤其是對(duì)于幾何題,包括解析幾何題,若不會(huì)畫圖,有時(shí)簡直是無從下手。

  因此,牢記各種題型的基本作圖方法,牢記各種函數(shù)的圖像和意義及演變過程和條件,對(duì)于提高解題速度非常重要。畫圖時(shí)應(yīng)注意盡量畫得準(zhǔn)確。畫圖準(zhǔn)確,有時(shí)能使你一眼就看出答案,再進(jìn)一步去演算證實(shí)就可以了;反之,作圖不準(zhǔn)確,有時(shí)會(huì)將你引入歧途。

  總之,學(xué)習(xí)是一個(gè)不斷深化的認(rèn)識(shí)過程,解題只是學(xué)習(xí)的一個(gè)重要環(huán)節(jié)。你對(duì)學(xué)習(xí)的內(nèi)容越熟悉,對(duì)基本解題思路和方法越熟悉,背熟的數(shù)字、公式越多,并能把局部與整體有機(jī)地結(jié)合為一體,形成了跳躍性思維,就可以大大加快解題速度。


做數(shù)學(xué)題的技巧與提速方法相關(guān)文章:

1.如何提高數(shù)學(xué)做題的速度和準(zhǔn)確度?這4個(gè)技巧要知道

2.做數(shù)學(xué)題需要思路

3.做中學(xué)物理題很慢的解決方法

4.2019中考數(shù)學(xué)答題時(shí)間分配技巧!幫你穩(wěn)拿高分,這些步驟不能少…

5.學(xué)好初中物理的十六個(gè)技巧

49216