特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 各學(xué)科學(xué)習(xí)方法 > 數(shù)學(xué)學(xué)習(xí)方法 >

初三數(shù)學(xué)基礎(chǔ)知識點總結(jié)

時間: 淑燕20 分享

初三數(shù)學(xué)基礎(chǔ)知識點總結(jié)有哪些?激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,教師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實際問題的能力。下面是小編整理的初三數(shù)學(xué)基礎(chǔ)知識點,歡迎閱讀學(xué)習(xí)!

初三數(shù)學(xué)基礎(chǔ)知識點總結(jié)

初三數(shù)學(xué)基礎(chǔ)知識

一、圓的'相關(guān)概念

1、圓的定義

在一個個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點A隨之旋轉(zhuǎn)所形成的圖形叫做圓,固定的端點O叫做圓心,線段OA叫做半徑。

2、直線圓的與置位關(guān)系

1.線直與圓有唯公一共時,點做直叫與圓線切

2.三角的外形圓接的圓叫做三心形角外心

3.弦切角于所等夾弧所對的的圓心角

4.三角的內(nèi)形圓切的圓叫做三心形角內(nèi)心

5.垂于直徑半直線必為圓的的切線

6.過徑半外的點并且垂直端于半的徑直線是圓切線

7.垂于直徑半直線是圓的的切線

8.圓切線垂的直過切于點半徑

3、圓的幾何表示

以點O為圓心的圓記作“⊙O”,讀作“圓O”

二、垂徑定理及其推論

垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。

推論1:(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。

(2)弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。

(3)平分弦所對的一條弧的直徑垂直平分弦,并且平分弦所對的另一條弧。

推論2:圓的兩條平行弦所夾的弧相等。

垂徑定理及其推論可概括為:

過圓心

垂直于弦

直徑 平分弦 知二推三

平分弦所對的優(yōu)弧

平分弦所對的劣弧

三、弦、弧等與圓有關(guān)的定義

1、弦

連接圓上任意兩點的線段叫做弦。(如圖中的AB)

2、直徑

經(jīng)過圓心的弦叫做直徑。(如途中的CD)

直徑等于半徑的2倍。

3、半圓

圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫做半圓。

4、弧、優(yōu)弧、劣弧

圓上任意兩點間的部分叫做圓弧,簡稱弧。

弧用符號“⌒”表示,以A,B為端點的弧記作“ ”,讀作“圓弧AB”或“弧AB”。

大于半圓的弧叫做優(yōu)弧(多用三個字母表示);小于半圓的弧叫做劣弧(多用兩個字母表示)

初三數(shù)學(xué)知識點總結(jié)

一、圓

1、圓的有關(guān)性質(zhì)

在一個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。

由圓的意義可知:

圓上各點到定點(圓心O)的距離等于定長的點都在圓上。

就是說:圓是到定點的距離等于定長的點的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點的集合。

圓的外部可以看作是到圓心的距離大于半徑的點的集合。連結(jié)圓上任意兩點的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。

圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)弧;小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。

圓心相同,半徑不相等的兩個圓叫同心圓。

能夠重合的兩個圓叫等圓。

同圓或等圓的半徑相等。

在同圓或等圓中,能夠互相重合的弧叫等弧。

二、過三點的圓

l、過三點的圓

過三點的圓的作法:利用中垂線找圓心

定理不在同一直線上的三個點確定一個圓。

經(jīng)過三角形各頂點的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的內(nèi)接三角形。

2、反證法

反證法的三個步驟:

①假設(shè)命題的結(jié)論不成立;

②從這個假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;

③由矛盾得出假設(shè)不正確,從而肯定命題的結(jié)論正確。

例如:求證三角形中最多只有一個角是鈍角。

證明:設(shè)有兩個以上是鈍角

則兩個鈍角之和>180°

與三角形內(nèi)角和等于180°矛盾。

∴不可能有二個以上是鈍角。

即最多只能有一個是鈍角。

三、垂直于弦的直徑

圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。

垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。

弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。

平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個條弧。

推理2:圓兩條平行弦所夾的弧相等。

四、圓心角、弧、弦、弦心距之間的關(guān)系

圓是以圓心為對稱中心的中心對稱圖形。

實際上,圓繞圓心旋轉(zhuǎn)任意一個角度,都能夠與原來的圖形重合。

頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。

推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。

五、圓周角

頂點在圓上,并且兩邊都和圓相交的角叫圓周角。

推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

推理3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。

由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。

初三數(shù)學(xué)重點公式

公式一:

設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

公式二:

設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α與-α的三角函數(shù)值之間的關(guān)系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

初三數(shù)學(xué)基礎(chǔ)知識點總結(jié)相關(guān)文章:

初三數(shù)學(xué)知識點考點歸納總結(jié)

初中數(shù)學(xué)基礎(chǔ)知識點總結(jié)

初中數(shù)學(xué)基礎(chǔ)知識點歸納總結(jié)

初三數(shù)學(xué)知識點歸納總結(jié)

初三數(shù)學(xué)知識點總結(jié)

初中九年級數(shù)學(xué)知識點總結(jié)歸納

初中數(shù)學(xué)知識點總結(jié)大全

初三數(shù)學(xué)中考復(fù)習(xí)重點章節(jié)知識點歸納

人教版九年級數(shù)學(xué)知識點歸納

初中九年級數(shù)學(xué)知識點總結(jié)

822461