初中數(shù)學解題思路有哪些
初中數(shù)學解題思路有哪些
如果把解題比做打仗,那么解題者的“兵器”就是數(shù)學基礎知識,“兵力”就是數(shù)學基本方法,而調(diào)動數(shù)學基礎知識、運用數(shù)學思想方法的數(shù)學解題思想則正是“兵法”。下面是學習啦小編分享給大家的初中數(shù)學解題思路的資料,希望大家喜歡!
初中數(shù)學解題思路一
如何獲得數(shù)學解題思路
解題思路的獲得,一般要經(jīng)歷三個步驟:1.從理解題意中提取有用的信息,如數(shù)式特點,圖形結構特征等;2.從記憶儲存中提取相關的信息,如有關公式,定理,基本模式等;3.將上述兩組信息進行有效重組,使之成為一個合乎邏輯的和諧結構。
數(shù)學的表達,有3種方式:1.文字語言,即用漢字表達的內(nèi)容;2.圖形語言,如幾何的圖形,函數(shù)的圖象;3.符號語言,即用數(shù)學符號表達的內(nèi)容,比如AB∥CD。
在初中學段中,不僅要學好數(shù)學知識,同時也要注意數(shù)學思想方法的學習,掌握好思想和方法,對數(shù)學的學習將會起到事半功倍的良好效果。其中整體與分類、類比與聯(lián)想、轉化與化歸和數(shù)形結合等不僅僅是學好數(shù)學的重要思想,同時對您今后的生活也必將起重要的作用。
先來看轉化思想:
我們知道任何事物都在不斷的運動,也就是轉化和變化。在生活中,為了解決一個具體問題,不論它有多復雜,我們都會把它簡單化,熟悉化以后再去解決。體現(xiàn)在數(shù)學上也就是要把難的問題轉化為簡單的問題,把不熟悉的問題轉化為熟悉的問題,把未知的問題轉化為已知的問題。
如方程的學習中,一元一次方程是學習方程的基礎,那么在學習二元一次方程組時,可以通過加減消元和代入消元這樣的手段把二元一次方程組轉化為一元一次方程來解決,轉化(加減和代入)是手段,消元是目的;在學習一元二次方程時,可以通過因式分解把一元二次方程轉化為兩個一元一次方程,在這里,轉化(分解因式)是手段,降次是目的。把未知轉化為已知,把復雜轉化為簡單。同樣,三元一次方程組可以通過加減和代入轉化為二元一次方程組,再轉化為一元一次方程。在幾何學習中,三角形是基礎,可能通過連對角線等作輔助線的方法把多邊形轉化為多個三角形進行問題的解決。
所以,在數(shù)學學習和生活中都要注意轉化思想的運用,解決問題,轉化是關鍵。
初中數(shù)學解題思路二
初中數(shù)學學生必備的解題理念
1.如果把解題比做打仗,那么解題者的“兵器”就是數(shù)學基礎知識,“兵力”就是數(shù)學基本方法,而調(diào)動數(shù)學基礎知識、運用數(shù)學思想方法的數(shù)學解題思想則正是“兵法”。
2.數(shù)學家存在的主要理由就是解決問題。因此,數(shù)學的真正的組成部分是問題和解答。“問題是數(shù)學的心臟”。
3.問題反映了現(xiàn)有水平與客觀需要的矛盾,對學生來說,就是已知和未知的矛盾。問題就是矛盾。對于學生而言,問題有三個特征:
(1)接受性:學生愿意解決并且具有解決它的知識基礎和能力基礎。
(2)障礙性:學生不能直接看出它的解法和答案,而必須經(jīng)過思考才能解決。
(3)探究性:學生不能按照現(xiàn)成的的套路去解,需要進行探索,尋找新的處理方法。
4.練習型的問題具有教學性,它的結論為數(shù)學家或教師所已知,其之成為問題僅相對于教學或?qū)W生而言,包括一個待計算的答案、一個待證明的結論、一個待作出的圖形、一個待判斷的命題、一個待解決的實際問題。
5.“問題解決”有不同的解釋,比較典型的觀點可歸納為4種:
(1)問題解決是心理活動。面臨新情境、新課題,發(fā)現(xiàn)它與主客觀需要的矛盾而自己卻沒有現(xiàn)成對策時,所引起的尋求處理辦法的一種活動。
(2)問題解決是一個探究過程。把“問題解決”定義為“將先前已獲得的知識用于新的、不熟悉的情境的過程”。這就是說,問題解決是一個發(fā)現(xiàn)的過程、探索的過程、創(chuàng)新的過程。
(3)問題解決是一個學習目的。“學習數(shù)學的主要目的在于問題解決”。因而,學習怎樣解決問題就成為學習數(shù)學的根本原因。此時,問題解決就獨立于特殊的問題,獨立于一般過程或方法,也獨立于數(shù)學的具體內(nèi)容。
(4)問題解決是一種生存能力。重視問題解決能力的培養(yǎng)、發(fā)展問題解決的能力,其目的之一是,在這個充滿疑問、有時連問題和答案都是不確定的世界里,學習生存的本領。
6.解題研究存在一些誤區(qū),首先一個表現(xiàn)是,用現(xiàn)成的例子說明現(xiàn)成的觀點,或用現(xiàn)成的觀點解釋現(xiàn)成的例子。其次一個表現(xiàn)是,長期徘徊在一招一式的歸類上,缺少觀點上的提高或?qū)嵸|(zhì)性的突破。第三個表現(xiàn)是,多研究“怎樣解”,較少問“為什么這樣解”。在這些誤區(qū)里,“解題而不立法、作答而不立論”。
7.人的思維依賴于必要的知識和經(jīng)驗,數(shù)學知識正是數(shù)學解題思維活動的出發(fā)點與憑借。豐富的知識并加以優(yōu)化的結構能為題意的本質(zhì)理解與思路的迅速尋找創(chuàng)造成功的條件。解題研究的一代宗師波利亞說過:“貨源充足和組織良好的知識倉庫是一個解題者的重要資本”。
8.熟練掌握數(shù)學基礎知識的體系。對于中學數(shù)學解題來說,應如數(shù)學家珍說出教材的概念系統(tǒng)、定理系統(tǒng)、符號系統(tǒng)。還應掌握中學數(shù)學競賽涉及的基礎理論。深刻理解數(shù)學概念、準確掌握數(shù)學定理、公式和法則。熟悉基本規(guī)則和常用的方法,不斷積累數(shù)學技巧。
9.數(shù)學的本質(zhì)活動是思維。思維的對象是概念,思維的方式是邏輯。當這種思維與新事物接觸時,將出現(xiàn)“相容”和“不容”的兩種可能。出現(xiàn)“相容”時,產(chǎn)生新結果,且被原概念吸收,并發(fā)展成新概念;當出現(xiàn)“不容”時,則產(chǎn)生了所謂的問題。這時,思維出現(xiàn)迂回,甚至暫時退回原地,將原概念擴大或?qū)⒃壿嬜兪剑钡叫滤季S與事物相容為止。至此,也產(chǎn)生新的結果,也被原思維吸收。這就是一個思維活動的全過程。
10.解題能力,表現(xiàn)于發(fā)現(xiàn)問題、分析問題、解決問題的敏銳、洞察力與整體把握。其主要成分是3種基本的數(shù)學能力(運算能力、邏輯思維能力、空間想象能力),核心是能否掌握正確的思維方法,包括邏輯思維與非邏輯思維。其基本要求包括:
(1)掌握解題的科學程序;
(2)掌握數(shù)學中各種常用的思維方法,如觀察、試驗、歸納、演繹、類比、分析、綜合、抽象、概括等;
(3)掌握解題的基本策略,能“因題制宜”地選擇對口的解題思路,使用有效的解題方法、調(diào)動精明的解題技巧;
(4)具有敏銳的直覺。應該明白,我們的數(shù)學解題活動是在縱橫交錯的數(shù)學關系中進行的,在這個過程中,我們從一種可能性過渡到另一種可能性時,并非對每一個數(shù)學細節(jié)都洞察無遺,并非總能借助于“三段論”的橋梁,而是在短時間內(nèi)朦朧地插上幻想的翅膀,直接飛翔到最近的可能性上,從而達到對某種數(shù)學對象的本質(zhì)領悟:
11.解題具有實踐性與探索性的特征,“就像游泳,滑雪或彈鋼琴一樣,只能通過模仿和實踐來學到它……你想學會游泳,你就必須下水,你想成為解題的能手,你就必須去解題”,“尋找題解,不能教會,而只能靠自己學會”。
12.所謂解題經(jīng)驗,就是某些數(shù)學知識、某些解題方法與某些條件的有序組合。成功是一種有效的有序組合,失敗是一種無效的無序組合(它從反面向我們提供有效的有序組合)。成功經(jīng)驗所獲得的有序組合,就好像建筑上的預制構件(或稱為思維組塊),遇到合適的場合,可以原封不動地把它搬上去。
13.認為解題純粹是一種智能活動顯然是錯誤的;決心與情緒所起的作用非常重要。教育學生解題是一種意志教育。當學生求解那些對他來說并不太容易的題目時,他學會了敗而不餒,學會了贊賞微小的進展,學會了等待主要念頭的萌動,學會了當主要念頭出現(xiàn)后如何全力以赴,直撲問題的核心或主干;當一旦突破關卡,如何去占領問題的至高點,并冷靜地府視全局,從而得到問題的完善解決。如果學生在解題過程中沒有機會嘗盡為求解而奮斗的喜怒哀樂,那么他的數(shù)學解題訓練就在最重要的地方失敗了。
14.教師的例題教學要暴露自己思維的真實過程,老師備課時,遇上的曲折和錯誤不能隨草紙扔到廢紙堆。如果教師掩瞞了解題中的曲折,自己在講臺裝神弄巧,得心應手,左右逢源,把自己打扮成超人,將給學生的學習產(chǎn)生誤導。這樣的教師越高明,學生越自卑。
初中數(shù)學解題思路三
各種題型的解答技巧
1.選擇題的答題技巧
(1)掌握選擇題應試的基本方法:要抓住選擇題的特點,充分地利用選擇支提供的信息,決不能把所有的選擇題都當作解答題來做。首先,看清試題的指導語,確認題型和要求。二是審查分析題干,確定選擇的范圍與對象,要注意分析題干的內(nèi)涵與外延規(guī)定。三是辨析選項,排誤選正。四是要正確標記和仔細核查。
(2)特值法。在選擇支中分別取特殊值進行驗證或排除,對于方程或不等式求解、確定參數(shù)的取值范圍等問題格外有效。
(3)反例法。把選擇題各選擇項中錯誤的答案排除,余下的便是正確答案。
(4)猜測法。因為數(shù)學選擇題沒有選錯倒扣分的規(guī)定,實在解不出來,猜測可以為你創(chuàng)造更多的得分機會。除須計算的題目外,一般不猜A。
2.填空題答題技巧
(1)要求熟記的基本概念、基本事實、數(shù)據(jù)公式、原理,復習時要特別細心,注意記熟,做到臨考前能準確無誤、清晰回憶。對那些起關鍵作用的,或最容易混淆記錯的概念、符號或圖形要特別注意,因為考查的往往就是它們。如區(qū)間的端點開還是閉、定義域和值域要用區(qū)間或集合表示、單調(diào)區(qū)間誤寫成不等式或把兩個單調(diào)區(qū)間取了并集等等。
(2)一般第4個填空題可能題意或題型較新,因而難度較大,可以酌情往后放。
3.解答題答題技巧
(1)仔細審題。注意題目中的關鍵詞,準確理解考題要求。
(2)規(guī)范表述。分清層次,要注意計算的準確性和簡約性、邏輯的條理性和連貫性。
(3)給出結論。注意分類討論的問題,最后要歸納結論。
(4)講求效率。合理有序的書寫試卷和使用草稿紙,節(jié)省驗算時間。
猜你喜歡: