特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦 > 實(shí)用范文 > 其他范文 > 范文大全 >

勾股定理教案人教版

時(shí)間: 欣敏0 分享

通過勾股定理的教學(xué),可以培養(yǎng)學(xué)生的數(shù)學(xué)思維能力和推理能力,提高學(xué)生的數(shù)學(xué)素養(yǎng)。下面是小編為大家?guī)淼墓垂啥ɡ斫贪溉私贪妫?5篇),希望大家能夠喜歡!

勾股定理教案人教版

勾股定理教案人教版(精選篇1)

一、教學(xué)目標(biāo)

1、讓學(xué)生通過對的圖形創(chuàng)造、觀察、思考、猜想、驗(yàn)證等過程,體會(huì)勾股定理的產(chǎn)生過程。

2、通過介紹我國古代研究勾股定理的成就感培養(yǎng)民族自豪感,激發(fā)學(xué)生為祖國的復(fù)興努力學(xué)習(xí)。

3、培養(yǎng)學(xué)生數(shù)學(xué)發(fā)現(xiàn)、數(shù)學(xué)分析和數(shù)學(xué)推理證明的能力。

二、教學(xué)重難點(diǎn)

利用拼圖證明勾股定理

三、學(xué)具準(zhǔn)備

四個(gè)全等的直角三角形、方格紙、固體膠

四、教學(xué)過程

(一) 趣味涂鴉,引入情景

教師:很多同學(xué)都喜歡在紙上涂涂畫畫,今天想請大家?guī)屠蠋熗瓿梢环盔f,你能按要求完成嗎?

(1)在邊長為1的方格紙上任意畫一個(gè)頂點(diǎn)都在格點(diǎn)上的直角三角形。

(2)再分別以這個(gè)三角形的三邊向三角形外作3個(gè)正方形。

學(xué)生活動(dòng):先獨(dú)立完成,再在小組內(nèi)互相交流畫法,最后班級(jí)展示。

(二)小組探究,大膽猜想

教師:觀察自己所涂鴉的圖形,回答下列問題:

1、請求出三個(gè)正方形的'面積,再說說這些面積之間具有怎樣的數(shù)量關(guān)系?

2、圖中所畫的直角三角形的邊長分別是多少?請根據(jù)面積之間的關(guān)系寫出邊長之間存在的數(shù)量關(guān)系。

3、與小組成員交流探究結(jié)果?并猜想:如果直角三角形兩直角邊分別為a、b,斜邊為c,那么a,b,c具有怎樣的數(shù)量關(guān)系?

4、方法提煉:這種利用面積相等得出直角三角形三邊等量關(guān)系的方法叫做什么方法?

學(xué)生活動(dòng):先獨(dú)立思考,再在小組內(nèi)互相交流探究結(jié)果,并猜想直角三角形的三邊關(guān)系,最后班級(jí)展示。

(三)趣味拼圖,驗(yàn)證猜想

教師:請利用四個(gè)全等的直角三角形進(jìn)行拼圖。

1、你能拼出哪些圖形?能拼出正方形和直角梯形嗎?

2、能否就你拼出的圖形利用面積法說明a2+b2=c2的合理性?如果可以,請寫下自己的推理過程。

學(xué)生活動(dòng):獨(dú)立拼圖,并思考如何利用圖形寫出相應(yīng)的證明過程,再在組內(nèi)交流算法,最后在班級(jí)展示。

(四)課堂訓(xùn)練 鞏固提升

教師:請完成下列問題,并上臺(tái)進(jìn)行展示。

在Rt△ABC中,∠C=900,∠A,∠B,∠C的對邊分別為a,b,c

已知a=6,b=8.求c.

已知c=25,b=15.求a .

已知c=9,a=3.求b.(結(jié)果保留根號(hào))

學(xué)生活動(dòng):先獨(dú)立完成問題,再組內(nèi)交流解題心得,最后上臺(tái)展示,其他小組幫助解決問題。

(五)課堂小結(jié),梳理知識(shí)

教師:說說自己這節(jié)課有哪些收獲?請從數(shù)學(xué)知識(shí)、數(shù)學(xué)方法、數(shù)學(xué)運(yùn)用等方向進(jìn)行總結(jié)。

勾股定理教案人教版(精選篇2)

課題:

勾股定理

課型:

新授課

課時(shí)安排:

1課時(shí)

教學(xué)目的:

一、知識(shí)與技能目標(biāo)理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡單的實(shí)際問題。

二、過程與方法目標(biāo)通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。

三、情感、態(tài)度與價(jià)值觀目標(biāo)了解中國古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。

教學(xué)重點(diǎn):

引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能運(yùn)用勾股定理解決一些簡單的實(shí)際問題

教學(xué)難點(diǎn):

用面積法方法證明勾股定理

課前準(zhǔn)備:

多媒體ppt,相關(guān)圖片

教學(xué)過程:

(一)情境導(dǎo)入

1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的`勾股樹,20_年國際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價(jià)值。

2、多媒體課件演示FLASH小動(dòng)畫片:某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊(duì)員能否進(jìn)入三樓滅火?已知一直角三角形的兩邊,如何求第三邊?學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會(huì)有辦法解決了。

(二)學(xué)習(xí)新課問題一是等腰直角三角形的情形(通過多媒體給出圖形),判斷外圍三個(gè)正方形面積有何關(guān)系?相傳2500年前,畢達(dá)哥拉斯(古希臘著名的哲學(xué)家、數(shù)學(xué)家、天文學(xué)家)有一次在朋友家做客時(shí),發(fā)現(xiàn)朋友家里用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。你能觀察圖中的地面,看看能發(fā)現(xiàn)什么?對于等腰直角三角形有這樣的性質(zhì):兩直邊的平方和等于斜邊的平方那么對于一般的直角三角形是否也有這樣的性質(zhì)呢?請大家畫一個(gè)任意的直角三角形,量一量,算一算。問題二是一般直角三角形的情形,判斷這時(shí)外圍三個(gè)正方形的面積是否也存在這種關(guān)系?通過這個(gè)觀察和驗(yàn)算這個(gè)直角三角形外圍的三個(gè)正方形面積之間的關(guān)系,同學(xué)們發(fā)現(xiàn)了什么規(guī)律嗎?通過前面對兩個(gè)問題的驗(yàn)證,可以得到勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊為c,那么a2+b2=c2。

(三)鞏固練習(xí)

1、如果一個(gè)直角三角形的兩條邊長分別是6厘米和8厘米,那么這個(gè)三角形的周長是多少厘米?

2、解決課程開始時(shí)提出的情境問題。

(四)小結(jié)

1、背景知識(shí)介紹

①《周髀算徑》中,西周的商高在公元一千多年前發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律;

②康熙數(shù)學(xué)專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是他的獨(dú)創(chuàng)。

2、通過這節(jié)課的學(xué)習(xí),你會(huì)寫方程了嗎?你有什么收獲和體會(huì)?

(五)作業(yè)練習(xí)18.1中的1、2、3題。板書設(shè)計(jì):勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊為c,那么a2+b2=c2。

勾股定理教案人教版(精選篇3)

一、教學(xué)目標(biāo)

通過對幾種常見的勾股定理驗(yàn)證方法,進(jìn)行分析和欣賞。理解數(shù)

學(xué)知識(shí)之間的內(nèi)在聯(lián)系,體會(huì)數(shù)形結(jié)合的思想方法,進(jìn)一步感悟勾股定理的文化價(jià)值。

通過拼圖活動(dòng),嘗試驗(yàn)證勾股定理,培養(yǎng)學(xué)生的動(dòng)手實(shí)踐和創(chuàng)新能力。

(3)讓學(xué)生經(jīng)歷自主探究、合作交流、觀察比較、計(jì)算推理、動(dòng)手操作等過程,獲得一些研究問題的方法,取得成功和克服困難的經(jīng)驗(yàn),培養(yǎng)學(xué)生良好的思維品質(zhì),增進(jìn)他們數(shù)學(xué)學(xué)習(xí)的信心。

二、教學(xué)的重、難點(diǎn)

重點(diǎn):探索和驗(yàn)證勾股定理的過程

難點(diǎn):

(1)“數(shù)形結(jié)合”思想方法的理解和應(yīng)用

通過拼圖,探求驗(yàn)證勾股定理的新方法

三、學(xué)情分析

八年級(jí)的學(xué)生已具備一定的生活經(jīng)驗(yàn),對新事物容易產(chǎn)生興趣,動(dòng)手實(shí)踐能力也比較強(qiáng),在班級(jí)上已初步形成合作交流,勇于探索與實(shí)踐的良好班風(fēng),估計(jì)本節(jié)課的學(xué)習(xí)中學(xué)生能夠在教師的引導(dǎo)和點(diǎn)撥下自主探索歸納勾股定理。

四、教學(xué)程序分析

(一)導(dǎo)入新課

介紹勾股世界

兩千多年前,古希臘有個(gè)畢達(dá)哥拉斯學(xué)派,他們首先發(fā)現(xiàn)了勾股定理,因此在國外人們通常稱勾股定理為畢達(dá)哥拉斯定理。為了紀(jì)念畢達(dá)哥拉斯學(xué)派,1955年希臘曾經(jīng)發(fā)行了一枚紀(jì)念郵票。

我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個(gè)直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被記載于我國古代著名的數(shù)學(xué)著作《周髀算經(jīng)》中。

(二)講解新課

1、探索活動(dòng)一:

觀察下圖,并回答問題:

(1)觀察圖1

正方形A中含有

個(gè)小方格,即A的面積是

個(gè)單位面積;

正方形B中含有

個(gè)小方格,即B的面積是

個(gè)單位面積;

正方形C中含有

個(gè)小方格,即C的面積是

個(gè)單位面積。

(2)在圖2、圖3中,正方形A、B、C中各含有多少個(gè)小方格?它們的面積各是多少?你是如何得到上述結(jié)果的?與同伴交流。

(3)請將上述結(jié)果填入下表,你能發(fā)現(xiàn)正方形A,B,C,的面積關(guān)系嗎?

A的面積

(單位面積)

B的面積

(單位面積)

C的面積

(單位面積)

圖1

9

9

18

圖2

4

4

8

2、探索活動(dòng)二:

(1)觀察圖3,圖4

并填寫下表:

A的面積

(單位面積)

B的面積

(單位面積)

C的面積

(單位面積)

圖3

16

9

25

圖4

4

9

13

你是怎樣得到上面結(jié)果的?與同伴交流。

(2)三個(gè)正方形A,B,C的面積之間的關(guān)系?

3、議一議(合作交流,驗(yàn)證發(fā)現(xiàn))

(1)你能發(fā)現(xiàn)直角三角形三邊長度之間存在什么關(guān)系嗎?

勾股定理:如果直角三角形兩直角邊分別為a、b,斜邊為c

,那么a2+b2=c2。

即直角三角形兩直角邊的平方和等于斜邊的平方。

(2)我們怎么證明這個(gè)定理呢?

教師指導(dǎo)第一種證明方法,學(xué)生合作探究第二種證明方法。

可得:

想一想:大正方形的`面積該怎樣表示?

想一想:這四個(gè)直角三角形還能怎樣拼?

可得:

4、例題分析

如圖,一根電線桿在離地面5米處斷裂,電線桿頂部落在離電線桿底部12米處,電線桿折斷之前有多高?

解:∵,

∴在中,

,根據(jù)勾股定理,

∴電線桿折斷之前的高度=BC+AB=5米+13米=18米

(三)課堂小結(jié)

勾股定理從邊的角度刻畫了直角三角形的又一個(gè)特征.人類對勾股定理的研究已有近3000年的歷史,在西方,勾股定理又被稱為“畢達(dá)哥拉斯定理”、“百牛定理”、“驢橋定理”等等

.

(四)布置作業(yè)

收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.

五、板書設(shè)計(jì)

勾股定理的探索與證明

做一做

勾股定理

議一議

(直角三角形的直角邊分別為a、b,斜邊為c,則a2+b2=c2)

六、課后反思

《新課程標(biāo)準(zhǔn)》指出:“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué)?!睌?shù)學(xué)實(shí)驗(yàn)在現(xiàn)階段的數(shù)學(xué)教學(xué)中還沒有普及與推廣,實(shí)際上,通過學(xué)生的合作探究、動(dòng)手實(shí)踐、歸納證明等活動(dòng),讓數(shù)學(xué)課堂生動(dòng)起來,也讓學(xué)生感覺數(shù)學(xué)是可以動(dòng)手做實(shí)驗(yàn)的,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣與激情。本節(jié)課,我充分利用學(xué)生動(dòng)手能力強(qiáng)、表現(xiàn)欲高的特點(diǎn),在充裕的時(shí)間里,放手讓學(xué)生動(dòng)手操作,自己歸納與分析。最后得出結(jié)論。我認(rèn)為本節(jié)課是成功的,一方面體現(xiàn)了學(xué)生的主體地位,另一方面讓實(shí)驗(yàn)走進(jìn)了數(shù)學(xué)課堂,真正體現(xiàn)了實(shí)驗(yàn)的巨大作用。

勾股定理教案人教版(精選篇4)

復(fù)習(xí)第一步::

勾股定理的有關(guān)計(jì)算

例1:(20_年甘肅省定西市中考題)下圖陰影部分是一個(gè)正方形,則此正方形的面積為.

析解:圖中陰影是一個(gè)正方形,面積正好是直角三角形一條直角邊的平方,因此由勾股定理得正方形邊長平方為:172-152=64,故正方形面積為6

勾股定理解實(shí)際問題

例2.(20_年吉林省中考試題)圖①是一面矩形彩旗完全展平時(shí)的尺寸圖(單位:cm).其中矩形ABCD是由雙層白布縫制的穿旗桿用的旗褲,陰影部分DCEF為矩形綢緞旗面,將穿好彩旗的旗桿垂直插在操場上,旗桿旗頂?shù)降孛娴母叨葹?20cm.在無風(fēng)的天氣里,彩旗自然下垂,如圖②.求彩旗下垂時(shí)最低處離地面的最小高度h.

析解:彩旗自然下垂的長度就是矩形DCEF

的對角線DE的長度,連接DE,在Rt△DEF中,根據(jù)勾股定理,

得DE=h=220-150=70(cm)

所以彩旗下垂時(shí)的最低處離地面的最小高度h為70cm

與展開圖有關(guān)的計(jì)算

例3、(20_年青島市中考試題)如圖,在棱長為1的正方體ABCD—A’B’C’D’的表面上,求從頂點(diǎn)A到頂點(diǎn)C’的最短距離.

析解:正方體是由平面圖形折疊而成,反之,一個(gè)正方體也可以把它展開成平面圖形,如圖是正方體展開成平面圖形的一部分,在矩形ACC’A’中,線段AC’是點(diǎn)A到點(diǎn)C’的最短距離.而在正方體中,線段AC’變成了折線,但長度沒有改變,所以頂點(diǎn)A到頂點(diǎn)C’的最短距離就是在圖2中線段AC’的長度.

在矩形ACC’A’中,因?yàn)锳C=2,CC’=1

所以由勾股定理得AC’=.

∴從頂點(diǎn)A到頂點(diǎn)C’的.最短距離為

復(fù)習(xí)第二步:

1.易錯(cuò)點(diǎn):本節(jié)同學(xué)們的易錯(cuò)點(diǎn)是:在用勾股定理求第三邊時(shí),分不清直角三角形的斜邊和直角邊;另外不論是否是直角三角形就用勾股定理;為了避免這些錯(cuò)誤的出現(xiàn),在解題中,同學(xué)們一定要找準(zhǔn)直角邊和斜邊,同時(shí)要弄清楚解題中的三角形是否為直角三角形.

例4:在Rt△ABC中,a,b,c分別是三條邊,∠B=90°,已知a=6,b=10,求邊長c.

錯(cuò)解:因?yàn)閍=6,b=10,根據(jù)勾股定理得c=剖析:上面解法,由于審題不仔細(xì),忽視了∠B=90°,這一條件而導(dǎo)致沒有分清直角三角形的斜邊和直角邊,錯(cuò)把c當(dāng)成了斜邊.

正解:因?yàn)閍=6,b=10,根據(jù)勾股定理得,c=溫馨提示:運(yùn)用勾股定理時(shí),一定分清斜邊和直角邊,不能機(jī)械套用c2=a2+b2

例5:已知一個(gè)Rt△ABC的兩邊長分別為3和4,則第三邊長的平方是

錯(cuò)解:因?yàn)镽t△ABC的兩邊長分別為3和4,根據(jù)勾股定理得:第三邊長的平方是32+42=25

剖析:此題并沒有告訴我們已知的邊長4一定是直角邊,而4有可能是斜邊,因此要分類討論.

正解:當(dāng)4為直角邊時(shí),根據(jù)勾股定理第三邊長的平方是25;當(dāng)4為斜邊時(shí),第三邊長的平方為:42-32=7,因此第三邊長的平方為:25或7.

溫馨提示:在用勾股定理時(shí),當(dāng)斜邊沒有確定時(shí),應(yīng)進(jìn)行分類討論.

例6:已知a,b,c為⊿ABC三邊,a=6,b=8,bc,且c為整數(shù),則c=.

錯(cuò)解:由勾股定理得c=剖析:此題并沒有告訴你⊿ABC為直角三角形

勾股定理教案人教版(精選篇5)

[教學(xué)分析]

勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時(shí)在實(shí)際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。

本節(jié)教科書從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計(jì)算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時(shí)教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個(gè)探究欄目,研究了勾股定理在解決實(shí)際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對勾股定理的作用有一定的認(rèn)識(shí)。

[教學(xué)目標(biāo)]

一、 知識(shí)與技能

1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。

2、應(yīng)用勾股定理解決簡單的實(shí)際問題

3學(xué)會(huì)簡單的合情推理與數(shù)學(xué)說理

二、 過程與方法

引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動(dòng)手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識(shí)。

三、 情感與態(tài)度目標(biāo)

通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動(dòng)中,學(xué)生親自動(dòng)手對勾股定理進(jìn)行探索與驗(yàn)證,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,以及自主學(xué)習(xí)的能力。

四、 重點(diǎn)與難點(diǎn)

1、探索和證明勾股定理

2熟練運(yùn)用勾股定理

[教學(xué)過程]

一、創(chuàng)設(shè)情景,揭示課題

1、教師展示圖片并介紹第一情景

以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學(xué)知識(shí)時(shí)的對話,為勾股定理的出現(xiàn)埋下伏筆。

周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也?!?/p>

2、教師展示圖片并介紹第二情景

畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。

二、師生協(xié)作,探究問題

1、現(xiàn)在請你也動(dòng)手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?

2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?

3、你能得到什么結(jié)論嗎?

三、得出命題

勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋: 由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。

四、勾股定理的證明

趙爽弦圖的證法(圖2)

第一種方法:邊長為 的正方形可以看作是由4個(gè)直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因?yàn)檫呴L為 的正方形面積加上4個(gè)直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。

第二種方法:邊長為 的正方形可以看作是由4個(gè)直角邊分別為 、 ,斜邊為 的

角三角形拼接形成的(虛線表示),不過中間缺出一個(gè)邊長為 的正方形“小洞”。

因?yàn)檫呴L為 的正方形面積等于4個(gè)直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。

這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的證題思想和對數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。

五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。

勾股定理的靈活運(yùn)用勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運(yùn)用勾股定理解決一些問題,你可以嗎?試一試。

例題:小明媽媽買了一部29英寸(74厘米)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯(cuò)了,你同意他的想法嗎?你能解釋這是為什么嗎?

六、歸納總結(jié)

1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實(shí)際問題

2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個(gè)直角三角形表示正方形面積,再次驗(yàn)證自己的發(fā)現(xiàn)。

七、討論交流

讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個(gè)梳理知識(shí)的機(jī)會(huì),通過提示性的引導(dǎo),讓學(xué)生對勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。

我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。

勾股定理教案人教版(精選篇6)

【學(xué)習(xí)目標(biāo)】

能運(yùn)用勾股定理及直角三角形的判別條件解決簡單的實(shí)際問題.

【學(xué)習(xí)重點(diǎn)】

勾股定理及直角三角形的判別條件的運(yùn)用.

【學(xué)習(xí)重點(diǎn)】

直角三角形模型的建立.

【學(xué)習(xí)過程】

一.課前復(fù)習(xí)

勾股定理及勾股定理逆定理的區(qū)別

二.新課學(xué)習(xí)

探究點(diǎn)一:螞蟻沿圓柱側(cè)面爬行的最短路徑問題

1.3如圖,有一個(gè)圓柱,它的高等于12cm,底面圓的周長是18cm.在圓柱下底面的A點(diǎn)有一只螞蟻,它想吃到上底面上與A點(diǎn)相對的B點(diǎn)處的食物,沿圓柱側(cè)面爬行的最短路程是多少?

思考:

1.利用學(xué)具,嘗試從A點(diǎn)到B點(diǎn)沿圓柱側(cè)面畫出幾條線路,你認(rèn)為

這樣的線路有幾條?可分為幾類?

2.將右圖的圓柱側(cè)面剪開展開成一個(gè)長方形,B點(diǎn)在什么位置?從

A點(diǎn)到B點(diǎn)的最短路線是什么?你是如何畫的?

1.33.螞蟻從A點(diǎn)出發(fā),想吃到B點(diǎn)上的食物,它沿圓柱側(cè)面爬行的最短路程是多少?你是如何解答這個(gè)問題的?畫出圖形,寫出解答過程。

4.你是如何將這個(gè)實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的?

小結(jié):

你是如何解決圓柱體側(cè)面上兩點(diǎn)之間的最短距離問題的?

探究點(diǎn)二:利用勾股定理逆定理如何判斷兩線垂直?

1.31.31.3李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直底邊AB,

但他隨身只帶了卷尺。(參看P13頁雕塑圖1-13)

(1)你能替他想辦法完成任務(wù)嗎?

1.31.3(2)李叔叔量得AD的長是30cm,AB的長是40cm,

BD長是50cm.AD邊垂直于AB邊嗎?你是如何解決這個(gè)問題的?

(3)小明隨身只有一個(gè)長度為20cm的刻度尺,他能有辦法檢驗(yàn)AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?

小結(jié):通過本道例題的探索,判斷兩線垂直,你學(xué)會(huì)了什么方法?

探究點(diǎn)三:利用勾股定理的方程思想在實(shí)際問題中的應(yīng)用

例圖1-14是一個(gè)滑梯示意圖,若將滑道AC水平放置,則剛好與AB一樣長.已知滑梯的高度CE=3m,CD=1m,試求滑道AC的長.

1.3

思考:

1.求滑道AC的長的問題可以轉(zhuǎn)化為什么數(shù)學(xué)問題?

2.你是如何解決這個(gè)問題的?寫出解答過程。

小結(jié):

方程思想是勾股定理中的重要思想,勾股定理反應(yīng)的直角三角形三邊的關(guān)系正是構(gòu)建方程的基礎(chǔ).

四.課堂小結(jié):本節(jié)課你學(xué)到了什么?

三.新知應(yīng)用

1.如圖,臺(tái)階A處的螞蟻要爬到B處搬運(yùn)食物,它怎么走最近?并求出最近距離.

1.3

2.如圖,在水池的正中央有一根蘆葦,池底長10尺,它高出水而1尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達(dá)池邊的水面則這根蘆葦?shù)拈L度是()

1.3

五.作業(yè)布置:習(xí)題1.41,3,4題

【反思】

一、教師我的體會(huì):

①、我根據(jù)學(xué)生實(shí)際情況認(rèn)真?zhèn)湔n這節(jié)課,書本總共兩個(gè)例題,且兩個(gè)例題都很難,如果一節(jié)課就講這兩題難題,那一方面學(xué)生的學(xué)習(xí)效率會(huì)比較低,另一方面會(huì)使學(xué)生畏難情緒增加。所以,我簡化教材,使教材易于操作,讓學(xué)生易于學(xué)習(xí),有利于學(xué)生學(xué)習(xí)新知識(shí)、接受新知識(shí),降低學(xué)習(xí)難度。

把教材讀薄,

②、除了備教材外,還備學(xué)生。從教案及授課過程也可以看出,充分考慮到了學(xué)生的年齡特點(diǎn):對新事物有好奇心,但對新知識(shí)的鉆研熱情又不夠高,這樣,造成教學(xué)難度較大,為了改變這一狀況,在處理教材時(shí),把某些數(shù)學(xué)語言轉(zhuǎn)換成通俗文字來表達(dá),把難度大的運(yùn)用能力降低為難度稍細(xì)的理解能力,讓學(xué)生樂于面對奧妙而又有一定深度的數(shù)學(xué),樂于學(xué)習(xí)數(shù)學(xué)。

③、新課選用的`例子、練習(xí),都是經(jīng)過精心挑選的,運(yùn)用性強(qiáng),貼近生活,與生活實(shí)際緊密聯(lián)系,既達(dá)到學(xué)習(xí)、鞏固新知識(shí)的目的,同時(shí),又充分展現(xiàn)出數(shù)學(xué)教學(xué)的重大特征:數(shù)學(xué)源于生活實(shí)際,又服務(wù)于生活實(shí)際。勾股定理源于生活,但同時(shí)它又能極大的為生活服務(wù)。

④、使用多媒體進(jìn)行教學(xué),使知識(shí)顯得形象直觀,充分發(fā)揮現(xiàn)代技術(shù)作用。

二、學(xué)生體會(huì):

課前,我們也去查閱了一些資料,關(guān)于勾股定理的證明以及有關(guān)的一些應(yīng)用,通過這節(jié)課,真真發(fā)現(xiàn)勾股定理真真來源于生活,我們的幾何圖形和幾何計(jì)算對于勾股定理來說非常廣泛,而且以后更要用好它。對于勾股定理都應(yīng)用時(shí),我覺得關(guān)鍵是找到相關(guān)的三角形,并且分清直角邊或斜邊,靈活機(jī)智地進(jìn)行計(jì)算和一些推理。另外與同學(xué)間在數(shù)學(xué)課上有自主學(xué)習(xí)的機(jī)會(huì),有相互之間的討論、爭辯等協(xié)作的機(jī)會(huì),在合作學(xué)習(xí)的過程中共同提高我覺得都是難得的機(jī)會(huì)。鍛煉了能力,提高了思維品質(zhì),并且勾股定理的應(yīng)用中我覺得圖形很美,古代的數(shù)學(xué)家已經(jīng)有了很好的研究并作出了很大的貢獻(xiàn),現(xiàn)代的藝術(shù)家們也在各方面用到很多,同時(shí)在課堂中漸漸地培養(yǎng)了我們的數(shù)學(xué)興趣和一定的思維能力。

不過課堂上老師在最后一題的畫圖中能放一放,讓我們有時(shí)間去思考怎么畫,那會(huì)更好些,自然思維也得到了發(fā)展。課上老師鼓勵(lì)我們嘗試不完善的甚至錯(cuò)誤的意見,大膽發(fā)表自己的見解,體現(xiàn)了我們是學(xué)習(xí)的主人。數(shù)學(xué)課堂里充滿了智慧。

勾股定理教案人教版(精選篇7)

一、教案背景概述:

教材分析: 勾股定理是直角三角形的重要性質(zhì),它把三角形有一個(gè)直角的"形"的特點(diǎn),轉(zhuǎn)化為三邊之間的"數(shù)"的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計(jì)算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點(diǎn)之一。本節(jié)課的重點(diǎn)是發(fā)現(xiàn)勾股定理,難點(diǎn)是說明勾股定理的正確性。

學(xué)生分析:1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細(xì)研究過三角尺的同學(xué)并不多,通過這樣的情景設(shè)計(jì),能非常簡單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。2、以與勾股定理有關(guān)的人文歷史知識(shí)為背景展開對直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。

設(shè)計(jì)理念:本教案以學(xué)生手中舞動(dòng)的三角尺為知識(shí)背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終, 讓學(xué)生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗(yàn)勾股定理的探索和運(yùn)用過程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。

教學(xué)目標(biāo):

1、 經(jīng)歷用面積割、補(bǔ)法探索勾股定理的過程,培養(yǎng)學(xué)生主動(dòng)探究意識(shí),發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。

2、 經(jīng)歷用多種割、補(bǔ)圖形的方法驗(yàn)證勾股定理的過程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界和有條理地思考能力以及語言表達(dá)能力等,感受勾股定理的文化價(jià)值。

3、 培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛國熱情。

4、 欣賞設(shè)計(jì)圖形美。

二、教案運(yùn)行描述:

教學(xué)準(zhǔn)備階段:

學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。

老師準(zhǔn)備:畢達(dá)哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。

三、教學(xué)流程:

(一)引入

同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍(lán)圖時(shí),你是否想過:他們的`邊有什么關(guān)系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)

(二)實(shí)驗(yàn)探究

1、取方格紙片,在上面先設(shè)計(jì)任意格點(diǎn)直角三角形,再以它們的每一邊分別向三角形外作正方形,如圖1

設(shè)網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b ,斜邊為c ,觀察并計(jì)算每個(gè)正方形的面積,以四人小組為單位填寫下表:

(討論難點(diǎn):以斜邊為邊的正方形的面積找法)

交流后得出一般結(jié)論: (用關(guān)于a、b、c的式子表示)

(三)探索所得結(jié)論的正確性

當(dāng)直角三角形的直角邊分別為a 、b,斜邊為c時(shí), 是否一定成立?

1、指導(dǎo)學(xué)生運(yùn)用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計(jì)合理分割(或補(bǔ)全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進(jìn)行)

在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補(bǔ)圖,展示出來交流講解,并引導(dǎo)學(xué)生進(jìn)行說理:

如圖2(用補(bǔ)的方法說明)

師介紹:(出示圖片)畢達(dá)哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進(jìn)朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進(jìn)行了探究證明……,終獲成功。后來西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為"畢達(dá)哥拉斯定理"。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計(jì)的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見課本52頁彩圖2—1,欣賞圖片)

如圖3(用割的方法去探索)

師介紹: (出示圖片) 中國古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運(yùn)用這個(gè)結(jié)論。早在公元前20__年左右,大禹治水時(shí)期,就曾經(jīng)用過此方法測量土地的等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用"勾三、股四、弦五"測量土地,他們對這一結(jié)論的運(yùn)用至少比古希臘人早500多年。公元200年左右,三國時(shí)期吳國數(shù)學(xué)家趙爽曾構(gòu)造此圖驗(yàn)證了這一結(jié)論的正確性。他的這個(gè)證明,可謂別具匠心,極富創(chuàng)新意識(shí),他用幾何圖形的割、來證明代數(shù)式之間的相等關(guān)系,既嚴(yán)密,又直觀,為中國古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨(dú)特風(fēng)格樹立了一個(gè)典范。他是我國有記載以來第一個(gè)證明這一結(jié)論的數(shù)學(xué)家。我國數(shù)學(xué)家們?yōu)榱思o(jì)念我國在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為"勾股定理"。(點(diǎn)題)

20__年,世界數(shù)學(xué)家大會(huì)在中國北京召開,當(dāng)時(shí)選用這個(gè)圖案作為會(huì)場主圖,它標(biāo)志著我國古代數(shù)學(xué)的輝煌成就。(見課本50頁彩圖,欣賞圖片)

如圖4(構(gòu)造新圖形的方法去探索)

師介紹:(出示圖片)勾股定理是數(shù)學(xué)史上的一顆璀璨明珠,它的證明在數(shù)學(xué)史上屢創(chuàng)奇跡,從畢達(dá)哥拉斯到現(xiàn)在,吸引著世界上無數(shù)的數(shù)學(xué)家、物理學(xué)家、數(shù)學(xué)愛好者對它的探究,甚至政界要人——美國第20任總統(tǒng)加菲爾德,也加入到對它的探索證明中,如圖是他當(dāng)年設(shè)計(jì)的證明方法。據(jù)說至今已經(jīng)找到的證明方法有四百多種,且每年還會(huì)有所增加。(若有時(shí)間可以繼續(xù)出示學(xué)生中有價(jià)值的圖片進(jìn)行討論),有興趣的同學(xué)課后可以繼續(xù)探索……

四、總結(jié):

本節(jié)課學(xué)習(xí)的勾股定理用語言敘說為:

五、作業(yè):

1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問題并交流。

2、探索勾股定理的運(yùn)用。

勾股定理教案人教版(精選篇8)

教材分析

1.勾股定理的逆定理是研究特殊三角形——直角三角形的一種判定方法,體現(xiàn)了數(shù)形結(jié)合的思想。

2.通過勾股定理與它的逆定理的學(xué)習(xí),加深了學(xué)生對性質(zhì)與判定之間辨證統(tǒng)一關(guān)系的認(rèn)識(shí)。

3. 完善了知識(shí)結(jié)構(gòu),為后繼學(xué)習(xí)打下基礎(chǔ)。

學(xué)情分析

初中生已經(jīng)具備一定的獨(dú)立思考和探索能力,并能在探索過程中形成自已的觀點(diǎn),能在傾聽別人意見的過程中逐漸完善自已的`想法,而且本班學(xué)生比較上進(jìn),思維活躍,愿意表達(dá)自已的見解,有一定的互動(dòng)互助基礎(chǔ)。

教學(xué)目標(biāo)

1.知識(shí)與技能:

(1)理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。

(2)掌握勾股定理的逆定理,并能應(yīng)用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形。

2.過程與方法

(1)通過對勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生、發(fā)展與形成過程。

(2)通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗(yàn)數(shù)形結(jié)合方法的應(yīng)用。

(3)通過對勾股定理的逆定理的證明,體會(huì)數(shù)形結(jié)合方法在問題解決中的作用,并能應(yīng)用勾股定理的逆定理來解決相關(guān)問題。

3.情感態(tài)度

(1)通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧與辨證統(tǒng)一的關(guān)系

(2)在探索勾股定理的逆定理的活動(dòng)中,通過一系列的富有探究性的問題,滲透與他人交流、合作的意識(shí)和探究精神。

教學(xué)重點(diǎn)和難點(diǎn)

教學(xué)重點(diǎn):勾股定理的逆定理及起應(yīng)用

教學(xué)難點(diǎn):勾股定理的逆定理的證明

勾股定理教案人教版(精選篇9)

一、教學(xué)任務(wù)分析

勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進(jìn)一步刻畫了直角三角形的特點(diǎn)。學(xué)習(xí)勾股定理極其逆定理是進(jìn)一步認(rèn)識(shí)和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運(yùn)算和代數(shù)學(xué)習(xí)的必然基礎(chǔ)?!?0__版數(shù)學(xué)課程標(biāo)準(zhǔn)》對勾股定理教學(xué)內(nèi)容的要求是:

1、在研究圖形性質(zhì)和運(yùn)動(dòng)等過程中,進(jìn)一步發(fā)展空間觀念;

2、在多種形式的數(shù)學(xué)活動(dòng)中,發(fā)展合情推理能力;

3、經(jīng)歷從不同角度分析問題和解決問題的方法的過程,體驗(yàn)解決問題方法的多樣性;

4、探索勾股定理及其逆定理,并能運(yùn)用它們解決一些簡單的實(shí)際問題。

本節(jié)《勾股定理的應(yīng)用》是北師大版八年級(jí)數(shù)學(xué)上冊第一章《勾股定理》第3節(jié)、具體內(nèi)容是運(yùn)用勾股定理及其逆定理解決簡單的實(shí)際問題、在這些具體問題的解決過程中,需要經(jīng)歷幾何圖形的抽象過程,需要借助觀察、操作等實(shí)踐活動(dòng),這些都有助于發(fā)展學(xué)生的分析問題、解決問題能力和應(yīng)用意識(shí);有些探究活動(dòng)具有一定的難度,需要學(xué)生相互間的合作交流,有助于發(fā)展學(xué)生合作交流的能力、

本節(jié)課的教學(xué)目標(biāo)是:

1、能正確運(yùn)用勾股定理及其逆定理解決簡單的實(shí)際問題。

2、經(jīng)歷實(shí)際問題抽象成數(shù)學(xué)問題的過程,學(xué)會(huì)選擇適當(dāng)?shù)臄?shù)學(xué)模型解決實(shí)際問題,提高學(xué)生分析問題、解決問題的能力并體會(huì)數(shù)學(xué)建模的思想、

教學(xué)重點(diǎn)和難點(diǎn):

應(yīng)用勾股定理及其逆定理解決實(shí)際問題是重點(diǎn)。

把實(shí)際問題化歸成數(shù)學(xué)模型是難點(diǎn)。

二、教學(xué)設(shè)想

根據(jù)新課標(biāo)提出的“要從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋和運(yùn)用的同時(shí),在思維能力情感態(tài)度和價(jià)值觀等方面得到進(jìn)步和發(fā)展”的理念,我想盡量給學(xué)生創(chuàng)設(shè)豐富的.實(shí)際問題情境 ,使教學(xué)活動(dòng)充滿趣味性和吸引力,讓他們在自主探究,合作交流中分析問題,建立數(shù)學(xué)模型,利用勾股定理及其逆定理解決問題。在教學(xué)過程中,采用一題多變的形式拓寬學(xué)生視野,訓(xùn)練學(xué)生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學(xué)生在獲得知識(shí)的同時(shí)提高能力。

在教學(xué)設(shè)計(jì)中,盡量考慮到不同學(xué)習(xí)水平的學(xué)生,注意知識(shí)由易到難的層次性,在課堂上,要照顧到接受較慢的學(xué)生。使不同學(xué)生有不同的收獲和發(fā)展。

三、教學(xué)過程分析

本節(jié)課設(shè)計(jì)了七個(gè)環(huán) 《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)節(jié)、第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):變式訓(xùn)練;第四環(huán)節(jié):議一議;第五環(huán)節(jié):做一做;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)、

第一環(huán)節(jié):情境引入

情景1:復(fù)習(xí)提 問:勾股定理的語言表述以及幾何語言表達(dá)?

設(shè)計(jì)意圖:溫習(xí)舊知識(shí),規(guī)范語言及數(shù)學(xué)表達(dá),體現(xiàn)

數(shù)學(xué)的 嚴(yán)謹(jǐn)性和規(guī)范性?!豆垂啥ɡ淼膽?yīng)用》教學(xué)設(shè)計(jì)情景2: 腦筋急轉(zhuǎn)彎一個(gè)三角形的兩條邊是3和4,第三邊是多少?

設(shè)計(jì)意圖:既靈活考察學(xué)生對勾股定理的理解,又增加了趣味性,還能考察學(xué)生三角形三邊關(guān)系。

第二環(huán)節(jié):合作探究(圓柱體表面路程最短問題)

情景3:課本引例(螞蟻怎樣走最近)

設(shè)計(jì)意圖:從有趣的生活場景引入,學(xué)生探究熱情高漲,通過實(shí)際動(dòng)手操作,結(jié)合問題逆向思考,或是回想兩點(diǎn)之間線段最短,通過合作交流將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型從而利用勾股定理解決,在活動(dòng)中體驗(yàn)數(shù)學(xué)建模,培養(yǎng)學(xué)生與人合作交流的能力,增強(qiáng)學(xué)生探究能力,操作能力,分析能力,發(fā)展空間觀念、

第三環(huán)節(jié):變式訓(xùn)練(由圓柱體表面路程最短問題逐步變?yōu)殚L方體表面的距離最短問題)

設(shè)計(jì)意圖:將問題的條件稍做改變,讓學(xué)生嘗試獨(dú)立解決,拓展學(xué)生視野,又加深他們對知識(shí)的理解和鞏固。再將圓柱問題變?yōu)檎襟w長方體問題,學(xué)生有了之前的經(jīng)驗(yàn),自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長方體問題中學(xué)生會(huì)有不同的做法,正好透分類討論思想。

第四環(huán)節(jié):議一議

內(nèi)容:李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)(1)你能替他想辦法完成任務(wù)嗎?

(2)李叔叔量得AD長是30厘米,AB長是40厘米,BD長是50厘米,AD邊垂直于AB邊嗎?為什么?

(3)小明隨身只有一個(gè)長度為20厘米的刻度尺,他能有辦法檢驗(yàn)AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?

設(shè)計(jì)意圖:

運(yùn)用勾股定理逆定理來解決實(shí)際問題,讓學(xué)生學(xué)會(huì)分析問題,正確合理選擇數(shù)學(xué)模型,感受由數(shù)到形的轉(zhuǎn)化,利用允許的工具靈活處理問題、

第五環(huán)節(jié):方程與勾股定理

在我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問題,這個(gè)問題的意思是:有一個(gè)水池,水面是一個(gè)邊長為10尺的正方形,在水池的中央有《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面,請問這個(gè)水池的深度和這根蘆葦?shù)拈L度各是多 少尺?《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)意圖:學(xué)生可以進(jìn)一步了解勾股定理的悠久歷史和廣泛應(yīng)用,了解我國古代人民的聰明才智;學(xué)會(huì)運(yùn)用方程的思想借助勾股定理解決實(shí)際問題。、

第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):

1、解決實(shí)際問題的方法是建立數(shù)學(xué)模型求解、

2、在尋求最短路徑時(shí),往往把空間問題平面化,利用勾股定理及其逆定理解決實(shí)際問題、

3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。

意圖:鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會(huì)到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史、《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)第七環(huán)作業(yè)設(shè)計(jì):

第一道題難度較小,大部分學(xué)生可以獨(dú)立完成,第二道題有較大難度,可以交流討論完成。

勾股定理教案人教版(精選篇10)

課題:

勾股定理

課型:

新授課

課時(shí)安排:

1課時(shí)

教學(xué)目的:

一、知識(shí)與技能目標(biāo)理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡單的實(shí)際問題。

二、過程與方法目標(biāo)通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。

三、情感、態(tài)度與價(jià)值觀目標(biāo)了解中國古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。

教學(xué)重點(diǎn):

引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能運(yùn)用勾股定理解決一些簡單的實(shí)際問題

教學(xué)難點(diǎn):

用面積法方法證明勾股定理

課前準(zhǔn)備:

多媒體ppt,相關(guān)圖片

教學(xué)過程:

(一)情境導(dǎo)入

1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹,20_年國際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價(jià)值。

2、多媒體課件演示FLASH小動(dòng)畫片:某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊(duì)員能否進(jìn)入三樓滅火?已知一直角三角形的.兩邊,如何求第三邊?學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會(huì)有辦法解決了。

(二)學(xué)習(xí)新課問題一是等腰直角三角形的情形(通過多媒體給出圖形),判斷外圍三個(gè)正方形面積有何關(guān)系?相傳2500年前,畢達(dá)哥拉斯(古希臘著名的哲學(xué)家、數(shù)學(xué)家、天文學(xué)家)有一次在朋友家做客時(shí),發(fā)現(xiàn)朋友家里用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。你能觀察圖中的地面,看看能發(fā)現(xiàn)什么?對于等腰直角三角形有這樣的性質(zhì):兩直邊的平方和等于斜邊的平方那么對于一般的直角三角形是否也有這樣的性質(zhì)呢?請大家畫一個(gè)任意的直角三角形,量一量,算一算。問題二是一般直角三角形的情形,判斷這時(shí)外圍三個(gè)正方形的面積是否也存在這種關(guān)系?通過這個(gè)觀察和驗(yàn)算這個(gè)直角三角形外圍的三個(gè)正方形面積之間的關(guān)系,同學(xué)們發(fā)現(xiàn)了什么規(guī)律嗎?通過前面對兩個(gè)問題的驗(yàn)證,可以得到勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊為c,那么a2+b2=c2。

(三)鞏固練習(xí)1、如果一個(gè)直角三角形的兩條邊長分別是6厘米和8厘米,那么這個(gè)三角形的周長是多少厘米?2、解決課程開始時(shí)提出的情境問題。

(四)小結(jié)

1、背景知識(shí)介紹①《周髀算徑》中,西周的商高在公元一千多年前發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律;②康熙數(shù)學(xué)專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是他的獨(dú)創(chuàng)。

2、通過這節(jié)課的學(xué)習(xí),你會(huì)寫方程了嗎?你有什么收獲和體會(huì)?

(五)作業(yè)練習(xí)18.1中的1、2、3題。板書設(shè)計(jì):勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊為c,那么a2+b2=c2。

勾股定理教案人教版(精選篇11)

一、教學(xué)目標(biāo)

(一)教學(xué)知識(shí)點(diǎn)

1.掌握勾股定理,了解利用拼圖驗(yàn)證勾股定理的方法.

2.運(yùn)用勾股解決一些實(shí)際問題.

(二)能力訓(xùn)練要求

1.學(xué)會(huì)用拼圖的方法驗(yàn)證勾股定理,培養(yǎng)學(xué)生的創(chuàng)新能力和解決實(shí)際問題的能力.

2.在拼圖過程中,鼓勵(lì)學(xué)生大膽聯(lián)想,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識(shí).

(三)情感與價(jià)值觀要求

利用拼圖的方法驗(yàn)證勾股定理,是我國古代數(shù)學(xué)家的一大貢獻(xiàn).借助對學(xué)生進(jìn)行愛國主義教育.并在拼圖的過程中獲得學(xué)習(xí)數(shù)學(xué)的快樂,提高學(xué)習(xí)數(shù)學(xué)的興趣.

二.教學(xué)重、難點(diǎn)

重點(diǎn):勾股定理的證明及其應(yīng)用.

難點(diǎn):勾股定理的證明.

三.教學(xué)方法

教師引導(dǎo)和學(xué)生自主探索相結(jié)合的方法.

在用拼圖的方法驗(yàn)證勾股定理的過程中.教師要引導(dǎo)學(xué)生善于聯(lián)想,將形的問題與數(shù)的問題聯(lián)系起來,讓學(xué)生自主探索,大膽地聯(lián)系前面知識(shí),推導(dǎo)出勾股定理,并自己嘗試用勾股定理解決實(shí)際問題.

四.教具準(zhǔn)備

1.每個(gè)學(xué)生準(zhǔn)備一張硬紙板;

2.投影片三張:

第一張:問題串(記作1.1.2 A);

第二張:議一議(記作1.1.2 B);

第三張:例題(記作1.1.2 C).

五.教學(xué)過程

Ⅰ.創(chuàng)設(shè)問題情景,引入新課

[師]我們曾學(xué)習(xí)過整式的.運(yùn)算,其中平方差公式(a+b)(a-b)=a2-b2;完全平方公式(ab)2=a22ab+b2是非常重要的內(nèi)容.誰還能記得當(dāng)時(shí)這兩個(gè)公式是如何推出的?

[生]利用多項(xiàng)式乘以多項(xiàng)式的法則從公式的左邊就可以推出右邊.例如(a+b)(a-b)=a2-ab+ab-b2=a2-b2,所以平方差公式是成立的.

[生]還可以用拼圖的方法來推出.例如:(a+b)2=a2+2ab+b2.我們可以用一個(gè)邊長為a的正方形,一個(gè)邊長為b的正方形,兩個(gè)長和寬分別為a和b的長方形可拼成如下圖所示的邊長為(a+b)的正方形,那么這個(gè)大的正方形的面積可以表示為(a+b)2;又可以表示為a2+2ab+b2.所以(a+b)2=a2+2ab+b2.

勾股定理教案人教版(精選篇12)

一、教學(xué)目標(biāo)

通過對幾種常見的勾股定理驗(yàn)證方法,進(jìn)行分析和欣賞。理解數(shù)

學(xué)知識(shí)之間的內(nèi)在聯(lián)系,體會(huì)數(shù)形結(jié)合的思想方法,進(jìn)一步感悟勾股定理的文化價(jià)值。

通過拼圖活動(dòng),嘗試驗(yàn)證勾股定理,培養(yǎng)學(xué)生的動(dòng)手實(shí)踐和創(chuàng)新能力。

(3)讓學(xué)生經(jīng)歷自主探究、合作交流、觀察比較、計(jì)算推理、動(dòng)手操作等過程,獲得一些研究問題的方法,取得成功和克服困難的經(jīng)驗(yàn),培養(yǎng)學(xué)生良好的思維品質(zhì),增進(jìn)他們數(shù)學(xué)學(xué)習(xí)的信心。

二、教學(xué)的重、難點(diǎn)

重點(diǎn):探索和驗(yàn)證勾股定理的過程

難點(diǎn):

(1)“數(shù)形結(jié)合”思想方法的理解和應(yīng)用

通過拼圖,探求驗(yàn)證勾股定理的新方法

三、學(xué)情分析

八年級(jí)的學(xué)生已具備一定的生活經(jīng)驗(yàn),對新事物容易產(chǎn)生興趣,動(dòng)手實(shí)踐能力也比較強(qiáng),在班級(jí)上已初步形成合作交流,勇于探索與實(shí)踐的良好班風(fēng),估計(jì)本節(jié)課的學(xué)習(xí)中學(xué)生能夠在教師的引導(dǎo)和點(diǎn)撥下自主探索歸納勾股定理。

四、教學(xué)程序分析

(一)導(dǎo)入新課

介紹勾股世界

兩千多年前,古希臘有個(gè)畢達(dá)哥拉斯學(xué)派,他們首先發(fā)現(xiàn)了勾股定理,因此在國外人們通常稱勾股定理為畢達(dá)哥拉斯定理。為了紀(jì)念畢達(dá)哥拉斯學(xué)派,1955年希臘曾經(jīng)發(fā)行了一枚紀(jì)念郵票。

我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個(gè)直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被記載于我國古代著名的數(shù)學(xué)著作《周髀算經(jīng)》中。

(二)講解新課

1、探索活動(dòng)一:

觀察下圖,并回答問題:

(1)觀察圖1

正方形A中含有

個(gè)小方格,即A的面積是

個(gè)單位面積;

正方形B中含有

個(gè)小方格,即B的面積是

個(gè)單位面積;

正方形C中含有

個(gè)小方格,即C的面積是

個(gè)單位面積。

(2)在圖2、圖3中,正方形A、B、C中各含有多少個(gè)小方格?它們的面積各是多少?你是如何得到上述結(jié)果的?與同伴交流。

(3)請將上述結(jié)果填入下表,你能發(fā)現(xiàn)正方形A,B,C,的面積關(guān)系嗎?

A的面積

(單位面積)

B的面積

(單位面積)

C的面積

(單位面積)

圖1

9

9

18

圖2

4

4

8

2、探索活動(dòng)二:

(1)觀察圖3,圖4

并填寫下表:

A的面積

(單位面積)

B的面積

(單位面積)

C的面積

(單位面積)

圖3

16

9

25

圖4

4

9

13

你是怎樣得到上面結(jié)果的?與同伴交流。

(2)三個(gè)正方形A,B,C的面積之間的關(guān)系?

3、議一議(合作交流,驗(yàn)證發(fā)現(xiàn))

(1)你能發(fā)現(xiàn)直角三角形三邊長度之間存在什么關(guān)系嗎?

勾股定理:如果直角三角形兩直角邊分別為a、b,斜邊為c

,那么a2+b2=c2。

即直角三角形兩直角邊的平方和等于斜邊的'平方。

(2)我們怎么證明這個(gè)定理呢?

教師指導(dǎo)第一種證明方法,學(xué)生合作探究第二種證明方法。

可得:

想一想:大正方形的面積該怎樣表示?

想一想:這四個(gè)直角三角形還能怎樣拼?

可得:

4、例題分析

如圖,一根電線桿在離地面5米處斷裂,電線桿頂部落在離電線桿底部12米處,電線桿折斷之前有多高?

解:∵,

∴在中,

,根據(jù)勾股定理,

∴電線桿折斷之前的高度=BC+AB=5米+13米=18米

(三)課堂小結(jié)

勾股定理從邊的角度刻畫了直角三角形的又一個(gè)特征.人類對勾股定理的研究已有近3000年的歷史,在西方,勾股定理又被稱為“畢達(dá)哥拉斯定理”、“百牛定理”、“驢橋定理”等等

(四)布置作業(yè)

收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.

五、板書設(shè)計(jì)

勾股定理的探索與證明

做一做

勾股定理

議一議

(直角三角形的直角邊分別為a、b,斜邊為c,則a2+b2=c2)

六、課后反思

《新課程標(biāo)準(zhǔn)》指出:“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué)?!睌?shù)學(xué)實(shí)驗(yàn)在現(xiàn)階段的數(shù)學(xué)教學(xué)中還沒有普及與推廣,實(shí)際上,通過學(xué)生的合作探究、動(dòng)手實(shí)踐、歸納證明等活動(dòng),讓數(shù)學(xué)課堂生動(dòng)起來,也讓學(xué)生感覺數(shù)學(xué)是可以動(dòng)手做實(shí)驗(yàn)的,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣與激情。本節(jié)課,我充分利用學(xué)生動(dòng)手能力強(qiáng)、表現(xiàn)欲高的特點(diǎn),在充裕的時(shí)間里,放手讓學(xué)生動(dòng)手操作,自己歸納與分析。最后得出結(jié)論。我認(rèn)為本節(jié)課是成功的,一方面體現(xiàn)了學(xué)生的主體地位,另一方面讓實(shí)驗(yàn)走進(jìn)了數(shù)學(xué)課堂,真正體現(xiàn)了實(shí)驗(yàn)的巨大作用。

勾股定理教案人教版(精選篇13)

教學(xué)目標(biāo):

1、知識(shí)目標(biāo):

(1)掌握勾股定理;

(2)學(xué)會(huì)利用勾股定理進(jìn)行計(jì)算、證明與作圖;

(3)了解有關(guān)勾股定理的歷史.

2、能力目標(biāo):

(1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;

(2)通過問題的解決,提高學(xué)生的運(yùn)算能力

3、情感目標(biāo):

(1)通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;

(2)通過有關(guān)勾股定理的歷史講解,對學(xué)生進(jìn)行德育教育.

教學(xué)重點(diǎn):勾股定理及其應(yīng)用

教學(xué)難點(diǎn):通過有關(guān)勾股定理的歷史講解,對學(xué)生進(jìn)行德育教育

教學(xué)用具:直尺,微機(jī)

教學(xué)方法:以學(xué)生為主體的討論探索法

教學(xué)過程():

1、新課背景知識(shí)復(fù)習(xí)

(1)三角形的三邊關(guān)系

(2)問題:(投影顯示)

直角三角形的三邊關(guān)系,除了滿足一般關(guān)系外,還有另外的特殊關(guān)系嗎?

2、定理的獲得

讓學(xué)生用文字語言將上述問題表述出來.

勾股定理:直角三角形兩直角邊 的平方和等于斜邊 的平方

強(qiáng)調(diào)說明:

(1)勾――最短的`邊、股――較長的直角邊、弦――斜邊

(2)學(xué)生根據(jù)上述學(xué)習(xí),提出自己的問題(待定)

學(xué)習(xí)完一個(gè)重要知識(shí)點(diǎn),給學(xué)生留有一定的時(shí)間和機(jī)會(huì),提出問題,然后大家共同分析討論.

3、定理的證明方法

方法一:將四個(gè)全等的直角三角形拼成如圖1所示的正方形.

方法二:將四個(gè)全等的直角三角形拼成如圖2所示的正方形,

方法三:“總統(tǒng)”法.如圖所示將兩個(gè)直角三角形拼成直角梯形

以上證明方法都由學(xué)生先分組討論獲得,教師只做指導(dǎo).最后總結(jié)說明

4、定理與逆定理的應(yīng)用

例1 已知:如圖,在△ABC中,∠ACB= ,AB=5cm,BC=3cm,CD⊥AB于D,求CD的長.

解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有

∴ ∠2=∠C

∴CD的長是2.4cm

例2 如圖,△ABC中,AB=AC,∠BAC= ,D是BC上任一點(diǎn),

求證:

證法一:過點(diǎn)A作AE⊥BC于E

則在Rt△ADE中,

又∵AB=AC,∠BAC=

∴AE=BE=CE

證法二:過點(diǎn)D作DE⊥AB于E, DF⊥AC于F

則DE∥AC,DF∥AB

又∵AB=AC,∠BAC=

∴EB=ED,F(xiàn)D=FC=AE

在Rt△EBD和Rt△FDC中

在Rt△AED中,

例3 設(shè)

求證:

證明:構(gòu)造一個(gè)邊長 的矩形ABCD,如圖

在Rt△ABE中

在Rt△BCF中

在Rt△DEF中

在△BEF中,BE+EF>BF

例4 國家電力總公司為了改善農(nóng)村用電電費(fèi)過高的現(xiàn)狀,目前正在全國各地農(nóng)村進(jìn)行電網(wǎng)改造,某村六組有四個(gè)村莊A、B、C、D正好位于一個(gè)正方形的四個(gè)頂點(diǎn),現(xiàn)計(jì)劃在四個(gè)村莊聯(lián)合架設(shè)一條線路,他們設(shè)計(jì)了四種架設(shè)方案,如圖實(shí)線部分.請你幫助計(jì)算一下,哪種架設(shè)方案最省電線.

解:不妨設(shè)正方形的邊長為1,則圖1、圖2中的總線路長分別為

AD+AB+BC=3,AB+BC+CD=3

圖3中,在Rt△DGF中

同理

∴圖3中的路線長為

圖4中,延長EF交BC于H,則FH⊥BC,BH=CH

由∠FBH= 及勾股定理得:

EA=ED=FB=FC=

∴EF=1-2FH=1-

∴此圖中總線路的長為4EA+EF=

∵3>2.828>2.732

∴圖4的連接線路最短,即圖4的架設(shè)方案最省電線.

5、課堂小結(jié):

(1)勾股定理的內(nèi)容

(2)勾股定理的作用

已知直角三角形的兩邊求第三邊

已知直角三角形的一邊,求另兩邊的關(guān)系

6、布置作業(yè):

a、書面作業(yè)P130#1、2、3

b、上交作業(yè)P132#1、3

板書設(shè)計(jì):

探究活動(dòng)

臺(tái)風(fēng)是一種自然災(zāi)害,它以臺(tái)風(fēng)中心為圓心在周圍數(shù)十千米范圍內(nèi)形成氣旋風(fēng)暴,有極強(qiáng)的破壞力,如圖,據(jù)氣象觀測,距沿海某城市A的正南方向220千米B處有一臺(tái)風(fēng)中心,其中心最大風(fēng)力為12級(jí),每遠(yuǎn)離臺(tái)風(fēng)中心20千米,風(fēng)力就會(huì)減弱一級(jí),該臺(tái)風(fēng)中心現(xiàn)正以15千米/時(shí)的速度沿北偏東 方向往C移動(dòng),且臺(tái)風(fēng)中心風(fēng)力不變,若城市所受風(fēng)力達(dá)到或走過四級(jí),則稱為受臺(tái)風(fēng)影響

(1)該城市是否會(huì)受到這交臺(tái)風(fēng)的影響?請說明理由

(2)若會(huì)受到臺(tái)風(fēng)影響,那么臺(tái)風(fēng)影響該城市持續(xù)時(shí)間有多少?

(3)該城市受到臺(tái)風(fēng)影響的最大風(fēng)力為幾級(jí)?

解:(1)由點(diǎn)A作AD⊥BC于D,

則AD就為城市A距臺(tái)風(fēng)中心的最短距離

在Rt△ABD中,∠B= ,AB=220

由題意知,當(dāng)A點(diǎn)距臺(tái)風(fēng)(12-4)20=160(千米)時(shí),將會(huì)受到臺(tái)風(fēng)影響.

故該城市會(huì)受到這次臺(tái)風(fēng)的影響.

(2)由題意知,當(dāng)A點(diǎn)距臺(tái)風(fēng)中心不超過60千米時(shí),

將會(huì)受到臺(tái)風(fēng)的影響,則AE=AF=160.當(dāng)臺(tái)風(fēng)中心從E到F處時(shí),

該城市都會(huì)受到這次臺(tái)風(fēng)的影響

由勾股定理得

∴EF=2DE=

因?yàn)檫@次臺(tái)風(fēng)中心以15千米/時(shí)的速度移動(dòng)

所以這次臺(tái)風(fēng)影響該城市的持續(xù)時(shí)間為 小時(shí)

(3)當(dāng)臺(tái)風(fēng)中心位于D處時(shí),A城市所受這次臺(tái)風(fēng)的風(fēng)力最大,其最大風(fēng)力為 級(jí).

勾股定理教案人教版(精選篇14)

1教學(xué)內(nèi)容分析

勾股定理是九年制義務(wù)教育教科書八年級(jí)下冊第十七章的內(nèi)容,是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

2學(xué)情分析

針對八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)、心理特征及學(xué)生的實(shí)際情況,可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時(shí)代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。

3教學(xué)目標(biāo)

(一)知識(shí)與技能

1、體驗(yàn)勾股定理的探索過程,會(huì)運(yùn)用勾股定理解決簡單的問題。

(二)過程與方法

1、讓學(xué)生經(jīng)歷用面積法探索勾股定理的過程,體會(huì)數(shù)形結(jié)合的思想,滲透觀察、歸納、猜想、驗(yàn)證的數(shù)學(xué)方法,體驗(yàn)從特殊到一般的邏輯推理過程。

(三)情感態(tài)度與價(jià)值觀

1、通過了解勾股定理的歷史,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想,激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)。

2、讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿了探索和創(chuàng)造,感受數(shù)學(xué)之美,探究之趣。

4重點(diǎn)與難點(diǎn)

重點(diǎn):會(huì)用勾股定理求直角三角形的邊長

難點(diǎn):勾股定理的探索過程

5課前準(zhǔn)備

多媒體課件

6教學(xué)過程

6.1第一學(xué)時(shí)

教學(xué)活動(dòng)

活動(dòng)1

【導(dǎo)入】欣賞圖片,了解歷史

20_年在北京召開了第24屆國際數(shù)學(xué)家大會(huì),它是最高水平的全球性數(shù)學(xué)科學(xué)學(xué)術(shù)會(huì)議,被譽(yù)為數(shù)學(xué)界的“奧運(yùn)會(huì)”.這就是本屆大會(huì)的會(huì)徽的圖案.

(1)你見過這個(gè)圖案嗎?

(2)你聽說過“勾股定理”嗎?

學(xué)生活動(dòng):學(xué)生觀察圖片,發(fā)表見解。

資源準(zhǔn)備:教師演示多媒體課件

設(shè)計(jì)意圖:從現(xiàn)實(shí)生活中提出“趙爽弦圖”,為學(xué)生能夠積極主動(dòng)地投入到探索活動(dòng)創(chuàng)設(shè)情境,激發(fā)學(xué)生學(xué)習(xí)熱情,同時(shí)為探索勾股定理提供背景材料。

活動(dòng)2【講授】探索勾股定理

探究一:探索直角三角形三邊的特殊關(guān)系:

(1)畫一直角三角形,使其兩邊滿足下面的條件,測量第三邊的長度,完成下表;

直角三角形1

直角邊一a=3

直角邊二b=4

斜邊c=?

猜想三邊關(guān)系滿足關(guān)系:

直角三角形2

直角邊一a=5

直角邊二b=?

斜邊c=13

猜想三邊關(guān)系滿足關(guān)系:

(2)猜想:直角三角形的三邊關(guān)系為

探究二:如果下圖中小方格的邊長是1,觀察圖形,完成下表,并與同學(xué)交流:你是怎樣得到的?

思考:每個(gè)圖中正方形的面積與三角形的邊長有何關(guān)系?歸納得出勾股定理。

勾股定理:

直角三角形等于

幾何語言表述:

如圖,在RtΔABC中,C=90°,則:

若BC=a,AC=b,AB=c,則上面的定理可以表示為:

學(xué)生活動(dòng):在獨(dú)立探究的基礎(chǔ)上,學(xué)生分組交流。

資源準(zhǔn)備:教師演示多媒體課件

設(shè)計(jì)意圖:滲透從特殊到一般的數(shù)學(xué)思想。為學(xué)生提供參與數(shù)學(xué)活動(dòng)的時(shí)間和空間,發(fā)揮學(xué)生的主體作用;培養(yǎng)學(xué)生的類比遷移能力及探索問題的能力,使學(xué)生在相互欣賞、爭辯、互助中得到提高。

活動(dòng)3【講授】證明勾股定理

是不是所有的直角三角形都有這樣的特點(diǎn)呢?這就需要我們對一個(gè)一般的直角三角形進(jìn)行證明.到目前為止,對這個(gè)命題的證明方法已有幾百種之多.下面,我們就來看一看我國數(shù)學(xué)家趙爽是怎樣證明這個(gè)命題的。

(1)以直角三角形ABC的兩條直角邊a、b為邊作兩個(gè)正方形.你能通過剪、拼把它拼成弦圖的樣子嗎?

(2)面積分別怎樣表示?它們有什么關(guān)系呢?

例1:已知,在△ABC中,∠C=90°,∠A、∠B、∠C的對邊

為a、b、c。求證:a2+b2=c2。

分析:

⑴讓學(xué)生準(zhǔn)備多個(gè)三角形模型,最好是有顏色的吹塑紙,

讓學(xué)生拼擺不同的形狀,利用面積相等進(jìn)行證明。

⑵拼成如圖所示,其等量關(guān)系為:

4S△+S小正=S大正

2ab+(b-a)2=c2

化簡可證

學(xué)生活動(dòng):學(xué)生在獨(dú)立思考的基礎(chǔ)上以小組為單位,動(dòng)手拼接。

資源準(zhǔn)備:教師演示多媒體課件

設(shè)計(jì)意圖:通過拼圖活動(dòng),調(diào)動(dòng)學(xué)生思維的積極性,鍛煉學(xué)生的動(dòng)手實(shí)踐能力,為學(xué)生提供從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),建立初步的空間觀念,發(fā)展形象思維。通過對定理的證明,讓學(xué)生確信定理的正確性。

活動(dòng)4【練習(xí)】簡單應(yīng)用勾股定理解題

1、求下圖中字母所代表的正方形的面積

2、求出下列各圖中x的值。

3、如圖所示,強(qiáng)大的臺(tái)風(fēng)使得一根旗桿在離地面9米處折斷倒下,旗桿頂部落在離旗桿底部12米處。旗桿折斷之前有多高?

4、如圖,點(diǎn)C是以AB為直徑的半圓上一點(diǎn),∠ACB=90°,AC=3,BC=4,則圖中陰影部分的面積是多少?

學(xué)生活動(dòng):學(xué)生獨(dú)立思考完成

設(shè)計(jì)意圖:教師利用學(xué)生已有的知識(shí)創(chuàng)設(shè)問題情境,有針對性地引導(dǎo)學(xué)生進(jìn)行練習(xí),為學(xué)習(xí)勾股定理在實(shí)際生活中的應(yīng)用做好鋪墊。

活動(dòng)5【作業(yè)】總結(jié)反思,布置作業(yè)

1、本節(jié)課你有哪些收獲?

2、還有哪些疑問?

3、作業(yè):略

學(xué)生活動(dòng):學(xué)生歸納、總結(jié)談感受

設(shè)計(jì)意圖:通過小結(jié)能為學(xué)生從能力、情感、態(tài)度等方面關(guān)注學(xué)生對課堂整體感受,在輕松愉快的氣氛中體會(huì)收獲的喜悅。

活動(dòng)6【講授】板書設(shè)計(jì)

勾股定理

一、定理:如果直角三角形的兩直角邊長分別為a,b,

斜邊為c,那么

二、證明:略

三、應(yīng)用:

活動(dòng)7【作業(yè)】教學(xué)反思

本節(jié)課涉及了大量的有關(guān)勾股定理的背景知識(shí),學(xué)生可以感受到勾股定理所蘊(yùn)含的濃郁的數(shù)學(xué)文化。教學(xué)中應(yīng)聆聽學(xué)生發(fā)言,尊重學(xué)生發(fā)展。積極引導(dǎo)學(xué)生深挖細(xì)究,體現(xiàn)過程方法。教學(xué)中應(yīng)著力激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,也要注重自主探索與合作交流,同時(shí)還要注意數(shù)學(xué)思想方法的滲透,為學(xué)生今后的發(fā)展拓展了空間。

17.1勾股定理

課時(shí)設(shè)計(jì)課堂實(shí)錄

17.1勾股定理

1第一學(xué)時(shí)教學(xué)活動(dòng)活動(dòng)1【導(dǎo)入】欣賞圖片,了解歷史

20_年在北京召開了第24屆國際數(shù)學(xué)家大會(huì),它是最高水平的全球性數(shù)學(xué)科學(xué)學(xué)術(shù)會(huì)議,被譽(yù)為數(shù)學(xué)界的“奧運(yùn)會(huì)”.這就是本屆大會(huì)的會(huì)徽的圖案.

(1)你見過這個(gè)圖案嗎?

(2)你聽說過“勾股定理”嗎?

學(xué)生活動(dòng):學(xué)生觀察圖片,發(fā)表見解。

資源準(zhǔn)備:教師演示多媒體課件

設(shè)計(jì)意圖:從現(xiàn)實(shí)生活中提出“趙爽弦圖”,為學(xué)生能夠積極主動(dòng)地投入到探索活動(dòng)創(chuàng)設(shè)情境,激發(fā)學(xué)生學(xué)習(xí)熱情,同時(shí)為探索勾股定理提供背景材料。

活動(dòng)2【講授】探索勾股定理

探究一:探索直角三角形三邊的特殊關(guān)系:

(1)畫一直角三角形,使其兩邊滿足下面的條件,測量第三邊的長度,完成下表;

直角三角形1

直角邊一a=3

直角邊二b=4

斜邊c=?

猜想三邊關(guān)系滿足關(guān)系:

直角三角形2

直角邊一a=5

直角邊二b=?

斜邊c=13

猜想三邊關(guān)系滿足關(guān)系:

(2)猜想:直角三角形的三邊關(guān)系為

探究二:如果下圖中小方格的邊長是1,觀察圖形,完成下表,并與同學(xué)交流:你是怎樣得到的?

思考:每個(gè)圖中正方形的面積與三角形的邊長有何關(guān)系?歸納得出勾股定理。

勾股定理:

直角三角形等于

幾何語言表述:

如圖,在RtΔABC中,C=90°,則:

若BC=a,AC=b,AB=c,則上面的定理可以表示為:

學(xué)生活動(dòng):在獨(dú)立探究的基礎(chǔ)上,學(xué)生分組交流。

資源準(zhǔn)備:教師演示多媒體課件

設(shè)計(jì)意圖:滲透從特殊到一般的數(shù)學(xué)思想。為學(xué)生提供參與數(shù)學(xué)活動(dòng)的時(shí)間和空間,發(fā)揮學(xué)生的主體作用;培養(yǎng)學(xué)生的類比遷移能力及探索問題的能力,使學(xué)生在相互欣賞、爭辯、互助中得到提高。

活動(dòng)3【講授】證明勾股定理

是不是所有的直角三角形都有這樣的特點(diǎn)呢?這就需要我們對一個(gè)一般的直角三角形進(jìn)行證明.到目前為止,對這個(gè)命題的證明方法已有幾百種之多.下面,我們就來看一看我國數(shù)學(xué)家趙爽是怎樣證明這個(gè)命題的。

(1)以直角三角形ABC的兩條直角邊a、b為邊作兩個(gè)正方形.你能通過剪、拼把它拼成弦圖的樣子嗎?

(2)面積分別怎樣表示?它們有什么關(guān)系呢?

例1:已知,在△ABC中,∠C=90°,∠A、∠B、∠C的對邊

為a、b、c。求證:a2+b2=c2。

分析:

⑴讓學(xué)生準(zhǔn)備多個(gè)三角形模型,最好是有顏色的吹塑紙,

讓學(xué)生拼擺不同的形狀,利用面積相等進(jìn)行證明。

⑵拼成如圖所示,其等量關(guān)系為:

4S△+S小正=S大正

2ab+(b-a)2=c2

化簡可證

學(xué)生活動(dòng):學(xué)生在獨(dú)立思考的基礎(chǔ)上以小組為單位,動(dòng)手拼接。

資源準(zhǔn)備:教師演示多媒體課件

設(shè)計(jì)意圖:通過拼圖活動(dòng),調(diào)動(dòng)學(xué)生思維的積極性,鍛煉學(xué)生的動(dòng)手實(shí)踐能力,為學(xué)生提供從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),建立初步的空間觀念,發(fā)展形象思維。通過對定理的證明,讓學(xué)生確信定理的正確性。

活動(dòng)4【練習(xí)】簡單應(yīng)用勾股定理解題

1、求下圖中字母所代表的正方形的面積

2、求出下列各圖中x的值。

3、如圖所示,強(qiáng)大的臺(tái)風(fēng)使得一根旗桿在離地面9米處折斷倒下,旗桿頂部落在離旗桿底部12米處。旗桿折斷之前有多高?

4、如圖,點(diǎn)C是以AB為直徑的半圓上一點(diǎn),∠ACB=90°,AC=3,BC=4,則圖中陰影部分的面積是多少?

學(xué)生活動(dòng):學(xué)生獨(dú)立思考完成

設(shè)計(jì)意圖:教師利用學(xué)生已有的知識(shí)創(chuàng)設(shè)問題情境,有針對性地引導(dǎo)學(xué)生進(jìn)行練習(xí),為學(xué)習(xí)勾股定理在實(shí)際生活中的應(yīng)用做好鋪墊。

活動(dòng)5【作業(yè)】總結(jié)反思,布置作業(yè)

1、本節(jié)課你有哪些收獲?

2、還有哪些疑問?

3、作業(yè):略

學(xué)生活動(dòng):學(xué)生歸納、總結(jié)談感受

設(shè)計(jì)意圖:通過小結(jié)能為學(xué)生從能力、情感、態(tài)度等方面關(guān)注學(xué)生對課堂整體感受,在輕松愉快的氣氛中體會(huì)收獲的喜悅。

活動(dòng)6【講授】板書設(shè)計(jì)

勾股定理

一、定理:如果直角三角形的兩直角邊長分別為a,b,斜邊為c,那么

二、證明:略

三、應(yīng)用:

活動(dòng)7【作業(yè)】教學(xué)反思

本節(jié)課涉及了大量的有關(guān)勾股定理的背景知識(shí),學(xué)生可以感受到勾股定理所蘊(yùn)含的濃郁的數(shù)學(xué)文化。教學(xué)中應(yīng)聆聽學(xué)生發(fā)言,尊重學(xué)生發(fā)展。積極引導(dǎo)學(xué)生深挖細(xì)究,體現(xiàn)過程方法。教學(xué)中應(yīng)著力激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,也要注重自主探索與合作交流,同時(shí)還要注意數(shù)學(xué)思想方法的滲透,為學(xué)生今后的發(fā)展拓展了空間。

勾股定理教案人教版(精選篇15)

一、教材分析:

(一)教材的地位與作用

從知識(shí)結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用。

從學(xué)生認(rèn)知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;勾股定理又是對學(xué)生進(jìn)行愛國主義教育的良好素材,因此具有相當(dāng)重要的地位和作用。

根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級(jí)學(xué)生的認(rèn)知水平我確定如下學(xué)習(xí)目標(biāo):知識(shí)技能、數(shù)學(xué)思考、問題解決、情感態(tài)度。其中情感態(tài)度方面,以我國數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛祖國悠久文化的情感。

(二)重點(diǎn)與難點(diǎn)

為變被動(dòng)接受為主動(dòng)探究,我確定本節(jié)課的重點(diǎn)為:勾股定理的探索過程。限于八年級(jí)學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點(diǎn),我將引導(dǎo)學(xué)生動(dòng)手實(shí)驗(yàn)突出重點(diǎn),合作交流突破難點(diǎn)。

二、教學(xué)與學(xué)法分析

教學(xué)方法葉圣陶說過"教師之為教,不在全盤授予,而在相機(jī)誘導(dǎo)。"因此教師利用幾何直觀提出問題,引導(dǎo)學(xué)生由淺入深的探索,設(shè)計(jì)實(shí)驗(yàn)讓學(xué)生進(jìn)行驗(yàn)證,感悟其中所蘊(yùn)涵的思想方法。

學(xué)法指導(dǎo)為把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,教師鼓勵(lì)學(xué)生采用動(dòng)手實(shí)踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗(yàn)知識(shí)的形成過程。

三、教學(xué)過程

我國數(shù)學(xué)文化源遠(yuǎn)流長、博大精深,為了使學(xué)生感受其傳承的魅力,我將本節(jié)課設(shè)計(jì)為以下五個(gè)環(huán)節(jié)。

首先,情境導(dǎo)入古韻今風(fēng)

給出《七巧八分圖》中的一組圖片,讓學(xué)生利用兩組七巧板進(jìn)行合作拼圖。讓學(xué)生觀察并思考三個(gè)正方形面積之間的關(guān)系?它們圍成了怎么樣三角形,反映在三邊上,又蘊(yùn)含著怎么樣數(shù)學(xué)奧秘呢?寓教于樂,激發(fā)學(xué)生好奇、探究的欲望。

第二步追溯歷史解密真相

勾股定理的探索過程是本節(jié)課的重點(diǎn),依照數(shù)學(xué)知識(shí)的循序漸進(jìn)、螺旋上升的原則,我設(shè)計(jì)如下三個(gè)活動(dòng)。

從上面低起點(diǎn)的問題入手,有利于學(xué)生參與探索。學(xué)生很容易發(fā)現(xiàn),在等腰三角形中存在如下關(guān)系。巧妙的將面積之間的關(guān)系轉(zhuǎn)化為邊長之間的關(guān)系,體現(xiàn)了轉(zhuǎn)化的思想。觀察發(fā)現(xiàn)雖然直觀,但面積計(jì)算更具說服力。將圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計(jì)算圖形面積,體現(xiàn)了數(shù)形結(jié)合的思想。學(xué)生會(huì)想到用"數(shù)格子"的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應(yīng)引導(dǎo)學(xué)生利用"割"和"補(bǔ)"的方法求正方形C的面積,為下一步探索復(fù)雜圖形的面積做鋪墊。

突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結(jié)論呢?體現(xiàn)了"從特殊到一般"的認(rèn)知規(guī)律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學(xué)生因作圖不準(zhǔn)確而產(chǎn)生的錯(cuò)誤,也為下面"勾三股四弦五"的.提出埋下伏筆。有了上一環(huán)節(jié)的鋪墊,有效地分散了難點(diǎn)。在求正方形C的面積時(shí),學(xué)生將展示"割"的方法,"補(bǔ)"的方法,有的學(xué)生可能會(huì)發(fā)現(xiàn)平移的方法,旋轉(zhuǎn)的方法,對于這兩種新方法教師應(yīng)給于表揚(yáng),肯定學(xué)生的研究成果,培養(yǎng)學(xué)生的類比、遷移以及探索問題的能力。

使用幾何畫板動(dòng)態(tài)演示,使幾何與代數(shù)之間的關(guān)系可視化。當(dāng)為直角三角形時(shí),改變?nèi)呴L度三邊關(guān)系不變,當(dāng)∠α為銳角或鈍角時(shí),三邊關(guān)系就改變了,進(jìn)而強(qiáng)調(diào)了命題成立的前提條件必須是直角三角形。加深學(xué)生對勾股定理理解的同時(shí)也拓展了學(xué)生的視野。

以上三個(gè)環(huán)節(jié)層層深入步步引導(dǎo),學(xué)生歸納得到命題1,從而培養(yǎng)學(xué)生的合情推理能力以及語言表達(dá)能力。

感性認(rèn)識(shí)未必是正確的,推理驗(yàn)證證實(shí)我們的猜想。

第三步推陳出新借古鼎新

教材中直接給出"趙爽弦圖"的證法對學(xué)生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動(dòng)解放學(xué)生的大腦,讓學(xué)生發(fā)揮自己的聰明才智證明勾股定理。這是教學(xué)的難點(diǎn)也是重點(diǎn),教師應(yīng)給學(xué)生充分的自主探索的時(shí)間與空間,讓學(xué)生的思維在相互討論中碰撞、在相互學(xué)習(xí)中完善。教師深入到學(xué)生中間,觀察學(xué)生探究方法接受學(xué)生的質(zhì)疑,對于不同的拼圖方案給予肯定。從而體現(xiàn)出"學(xué)生是學(xué)習(xí)的主體,教師是組織者、引導(dǎo)者與合作者"這一教學(xué)理念。學(xué)生會(huì)發(fā)現(xiàn)兩種證明方案。

方案1為趙爽弦圖,學(xué)生講解論證過程,再現(xiàn)古代數(shù)學(xué)家的探索方法。方案2為學(xué)生自己探索的結(jié)果,論證之巧較方案1有異曲同工之妙。整個(gè)探索過程,讓學(xué)生經(jīng)歷由表面到本質(zhì),由合情推理到演繹推理的發(fā)掘過程,體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn)性。對比"古"、"今"兩種證法,讓學(xué)生體會(huì)"吹盡黃沙始到金"的喜悅,感受到"青出于藍(lán)而勝于藍(lán)"的自豪感。板書勾股定理,進(jìn)而給出字母表示,培養(yǎng)學(xué)生的符號(hào)意識(shí)。

教師對"勾、股、弦"的含義以及古今中外對勾股定理的研究做一個(gè)介紹,使學(xué)生感受數(shù)學(xué)文化,培養(yǎng)民族自豪感和愛國主義精神。利用勾股樹動(dòng)態(tài)演示,讓學(xué)生欣賞數(shù)學(xué)的精巧、優(yōu)美。

第四步取其精華古為今用

我按照"理解—掌握—運(yùn)用"的梯度設(shè)計(jì)了如下三組習(xí)題。

(1)對應(yīng)難點(diǎn),鞏固所學(xué)。

(2)考查重點(diǎn),深化新知。

(3)解決問題,感受應(yīng)用。

第五步溫故反思任務(wù)后延

在課堂接近尾聲時(shí),我鼓勵(lì)學(xué)生從"四基"的要求對本節(jié)課進(jìn)行小結(jié)。進(jìn)而總結(jié)出一個(gè)定理、二個(gè)方案、三種思想、四種經(jīng)驗(yàn)。

然后布置作業(yè),分層作業(yè)體現(xiàn)了教育面向全體學(xué)生的理念。

2219877