勾股定理數(shù)學(xué)知識(shí)提綱
數(shù)學(xué)是中考重要科目,想要學(xué)好數(shù)學(xué),首先要找到學(xué)習(xí)的竅門(mén),這樣可以讓我們事半功倍。下面小編給大家分享一些勾股定理數(shù)學(xué)知識(shí)提綱,希望能夠幫助大家,歡迎閱讀!
勾股定理數(shù)學(xué)知識(shí)提綱
勾股定理 直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即
a2+b2=c2.
勾股定理逆定理 如果三角形三邊長(zhǎng)a,b,c有下面關(guān)系:
a2+b2=c2
那么這個(gè)三角形是直角三角形.
早在3000年前,我國(guó)已有“勾廣三,股修四,徑陽(yáng)五”的說(shuō)法.
關(guān)于勾股定理,有很多證法,在我國(guó)它們都是用拼圖形面積方法來(lái)證明的.下面的證法1是歐幾里得證法.
證法1 如圖2-16所示.在Rt△ABC的外側(cè),以各邊為邊長(zhǎng)分別作正方形ABDE,BCHK,ACFG,它們的面積分別是c2,a2,b2.下面證明,大正方形的面積等于兩個(gè)小正方形的面積之和.
過(guò)C引CM∥BD,交AB于L,連接BG,CE.因?yàn)?/p>
AB=AE,AC=AG,∠CAE=∠BAG,
所以△ACE≌△AGB(SAS).而
所以 SAEML=b2. ①
同理可證 SBLMD=a2. ②
①+②得
SABDE=SAEML+SBLMD=b2+a2,
即 c2=a2+b2.
證法2 如圖2-17所示.將Rt△ABC的兩條直角邊CA,CB分別延長(zhǎng)到D,F(xiàn),使AD=a,BF=b.完成正方形CDEF(它的邊長(zhǎng)為a+b),又在DE上截取DG=b,在EF上截取EH=b,連接AG,GH,HB.由作圖易知
△ADG≌△GEH≌△HFB≌△ABC,
所以
AG=GH=HB=AB=c,
∠BAG=∠AGH=∠GHB=∠HBA=90°,
因此,AGHB為邊長(zhǎng)是c的正方形.顯然,正方形CDEF的面積等于正方形AGHB的面積與四個(gè)全等的直角三角形(△ABC,△ADG,△GEH,△HFB)的面積和,即
化簡(jiǎn)得 a2+b2=c2.
證法3 如圖2-18.在直角三角形ABC的斜邊AB上向外作正方形ABDE,延長(zhǎng)CB,自E作EG⊥CB延長(zhǎng)線于G,自D作DK⊥CB延長(zhǎng)線于K,又作AF, DH分別垂直EG于F,H.由作圖不難證明,下述各直角三角形均與Rt△ABC全等:
△AFE≌△EHD≌△BKD≌△ACB.
設(shè)五邊形ACKDE的面積為S,一方面
S=SABDE+2S△ABC, ①
另一方面
S=SACGF+SHGKD+2S△ABC. ②
由①,②
所以 c2=a2+b2.
關(guān)于勾股定理,在我國(guó)古代還有很多類(lèi)似上述拼圖求積的證明方法,我們將在習(xí)題中展示其中一小部分,它們都以中國(guó)古代數(shù)學(xué)家的名字命名.
利用勾股定理,在一般三角形中,可以得到一個(gè)更一般的結(jié)論.
定理 在三角形中,銳角(或鈍角)所對(duì)的邊的平方等于另外兩邊的平方和,減去(或加上)這兩邊中的一邊與另一邊在這邊(或其延長(zhǎng)線)上的射影的乘積的2倍.
證 (1)設(shè)角C為銳角,如圖2-19所示.作AD⊥BC于D, 則CD就是AC在BC上的射影.在直角三角形ABD中,
AB2=AD2+BD2, ①
在直角三角形ACD中,
AD2=AC2-CD2, ②
又
BD2=(BC-CD)2, ③
②,③代入①得
AB2=(AC2-CD2)+(BC-CD)2
=AC2-CD2+BC2+CD2-2BC?CD
=AC2+BC2-2BC?CD,
即
c2=a2+b2-2a?CD. ④
(2)設(shè)角C為鈍角,如圖2-20所示.過(guò)A作AD與BC延長(zhǎng)線垂直于D,則CD就是AC在BC(延長(zhǎng)線)上的射影.在直角三角形ABD中,
AB2=AD2+BD2, ⑤
在直角三角形ACD中,
AD2=AC2-CD2, ⑥
又
BD2=(BC+CD)2, ⑦
將⑥,⑦代入⑤得
AB2=(AC2-CD2)+(BC+CD)2
=AC2-CD2+BC2+CD2+2BC?CD
=AC2+BC2+2BC?CD,
即
c2=a2+b2+2a?cd. ⑧
綜合④,⑧就是我們所需要的結(jié)論
特別地,當(dāng)∠C=90°時(shí),CD=0,上述結(jié)論正是勾股定理的表述:
c2=a2+b2.
因此,我們常又稱(chēng)此定理為廣勾股定理(意思是勾股定理在一般三角形中的推廣).
由廣勾股定理我們可以自然地推導(dǎo)出三角形三邊關(guān)系對(duì)于角的影響.在△ABC中,
(1)若c2=a2+b2,則∠C=90°;
(2)若c2
(3)若c2>a2+b2,則∠C>90°.
勾股定理及廣勾股定理深刻地揭示了三角形內(nèi)部的邊角關(guān)系,因此在解決三角形(及多邊形)的問(wèn)題中有著廣泛的應(yīng)用.
例1 如圖2-21所示.已知:在正方形ABCD中,∠BAC的平分線交BC于E,作EF⊥AC于F,作FG⊥AB于G.求證:AB2=2FG2.
分析 注意到正方形的特性∠CAB=45°,所以△AGF是等腰直角三角形,從而有AF2=2FG2,因而應(yīng)有AF=AB,這啟發(fā)我們?nèi)プC明△ABE≌△AFE.
證 因?yàn)锳E是∠FAB的平分線,EF⊥AF,又AE是△AFE與△ABE的公共邊,所以
Rt△AFE≌Rt△ABE(AAS),
所以 AF=AB. ①
在Rt△AGF中,因?yàn)椤螰AG=45°,所以
AG=FG,
AF2=AG2+FG2=2FG2. ②
由①,②得
AB2=2FG2.
說(shuō)明 事實(shí)上,在審題中,條件“AE平分∠BAC”及“EF⊥AC于F”應(yīng)使我們意識(shí)到兩個(gè)直角三角形△AFE與△ABE全等,從而將AB“過(guò)渡”到AF,使AF(即AB)與FG處于同一個(gè)直角三角形中,可以利用勾股定理進(jìn)行證明了.
例2 如圖2-22所示.AM是△ABC的BC邊上的中線,求證:AB2+AC2=2(AM2+BM2).
證 過(guò)A引AD⊥BC于D(不妨設(shè)D落在邊BC內(nèi)).由廣勾股定理,在△ABM中,
AB2=AM2+BM2+2BM?MD. ①
在△ACM中,
AC2=AM2+MC2-2MC?MD. ②
①+②,并注意到MB=MC,所以
AB2+AC2=2(AM2+BM2). ③
如果設(shè)△ABC三邊長(zhǎng)分別為a,b,c,它們對(duì)應(yīng)邊上的中線長(zhǎng)分別為ma,mb,mc,由上述結(jié)論不難推出關(guān)于三角形三條中線長(zhǎng)的公式.
推論 △ABC的中線長(zhǎng)公式:
說(shuō)明 三角形的中線將三角形分為兩個(gè)三角形,其中一個(gè)是銳角三角形,另一個(gè)是鈍角三角形(除等腰三角形外).利用廣勾股定理恰好消去相反項(xiàng),獲得中線公式.①′,②′,③′中的ma,mb,mc分別表示a,b,c邊上的中線長(zhǎng).
例3 如圖2-23所示.求證:任意四邊形四條邊的平方和等于對(duì)角線的平方和加對(duì)角線中點(diǎn)連線平方的4倍.
分析 如圖2-23所示.對(duì)角線中點(diǎn)連線PQ,可看作△BDQ的中線,利用例2的結(jié)論,不難證明本題.
證 設(shè)四邊形ABCD對(duì)角線AC,BD中點(diǎn)分別是Q,P.由例2,在△BDQ中,
即
2BQ2+2DQ2=4PQ2+BD2. ①
在△ABC中,BQ是AC邊上的中線,所以
在△ACD中,QD是AC邊上的中線,所以
將②,③代入①得
=4PQ2+BD2,
即
AB2+BC2+CD2+DA2=AC2+BD2+4PQ2.
說(shuō)明 本題是例2的應(yīng)用.善于將要解決的問(wèn)題轉(zhuǎn)化為已解決的問(wèn)題,是人們解決問(wèn)題的一種基本方法,即化未知為已知的方法.下面,我們?cè)倏磧蓚€(gè)例題,說(shuō)明這種轉(zhuǎn)化方法的應(yīng)用.
例4 如圖2-24所示.已知△ABC中,∠C=90°,D,E分別是BC,AC上的任意一點(diǎn).求證:AD2+BE2=AB2+DE2.
分析 求證中所述的4條線段分別是4個(gè)直角三角形的斜邊,因此考慮從勾股定理入手.
證 AD2=AC2+CD2,BE2=BC2+CE2,所以
AD2+BE2=(AC2+BC2)+(CD2+CE2)=AB2+DE2
例5 求證:在直角三角形中兩條直角邊上的中線的平方和的4倍等于斜邊平方的5倍.
如圖2-25所示.設(shè)直角三角形ABC中,∠C=90°,AM,BN分別是BC,AC邊上的中線.求證:
4(AM2+BN2)=5AB2.
分析 由于AM,BN,AB均可看作某個(gè)直角三角形的斜邊,因此,仿例4的方法可從勾股定理入手,但如果我們能將本題看成例4的特殊情況――即M,N分別是所在邊的中點(diǎn),那么可直接利用例4的結(jié)論,使證明過(guò)程十分簡(jiǎn)潔.
證 連接MN,利用例4的結(jié)論,我們有
AM2+BN2=AB2+MN2,
所以 4(AM2+BN2)=4AB2+4MN2. ①
由于M,N是BC,AC的中點(diǎn),所以
所以 4MN2=AB2. ②
由①,②
4(AM2+BN2)=5AB2.
說(shuō)明 在證明中,線段MN稱(chēng)為△ABC的中位線,以后會(huì)知道中位線的基本性質(zhì):“MN∥AB且MN=圖2-26所示.MN是△ABC的一條中位線,設(shè)△ABC的面積為S.由于M,N分別是所在邊的中點(diǎn),所以S△ACM=S△BCN,兩邊減去公共部分△CMN后得S△AMN=S△BMN,從而AB必與MN平行.又S△ABM=高相同,而S△ABM=2S△BMN,所以AB=2MN.
初中數(shù)學(xué)要怎么學(xué)
預(yù)習(xí)是學(xué)習(xí)的第一步,通過(guò)預(yù)習(xí)可以更好地聽(tīng)老師講課,提高學(xué)習(xí)效率。學(xué)生在上課之前有過(guò)預(yù)習(xí),可以對(duì)新知識(shí)有初步的了解,并且找到不明白的問(wèn)題,從而在課堂上實(shí)現(xiàn)針對(duì)性地的聽(tīng)講。
2、課后復(fù)習(xí)
復(fù)習(xí)是對(duì)已學(xué)知識(shí)的鞏固和強(qiáng)化,通過(guò)復(fù)習(xí)可以加深對(duì)知識(shí)的記憶,從而達(dá)到鞏固的效果。學(xué)生在課后要及時(shí)復(fù)習(xí),減緩遺忘速度,形成對(duì)新知識(shí)的深刻印象。
數(shù)學(xué)答題技巧
1、配方法
所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱(chēng)為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋€(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。
勾股定理數(shù)學(xué)知識(shí)提綱相關(guān)文章:
★ 數(shù)學(xué)勾股定理知識(shí)點(diǎn)
★ 高一數(shù)學(xué)勾股定理知識(shí)點(diǎn)總結(jié)
★ 勾股定理應(yīng)用中的知識(shí)點(diǎn)總結(jié)
★ 八年級(jí)數(shù)學(xué)下冊(cè)勾股定理和四邊形的復(fù)習(xí)提綱
★ 八年級(jí)數(shù)學(xué)勾股定理知識(shí)
★ 八年級(jí)數(shù)學(xué)勾股定理經(jīng)典例題解析
★ 中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)最全提綱