高三上學期數(shù)學的知識點
數(shù)學知識在高中階段,是大家的一道坎,理科數(shù)學更是。那么關于高三理科數(shù)學完整的知識點總結,同學們知道嗎?如果不知道,趕快來小編這里閱讀?下面小編為大家?guī)砀呷蠈W期數(shù)學的知識點,希望對您有所幫助!
高三上學期數(shù)學的知識點
復數(shù)的概念:
形如a+bi(a,b∈R)的數(shù)叫復數(shù),其中i叫做虛數(shù)單位。全體復數(shù)所成的集合叫做復數(shù)集,用字母C表示。
復數(shù)的表示:
復數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數(shù)的代數(shù)形式,其中a叫復數(shù)的實部,b叫復數(shù)的虛部。
復數(shù)的幾何意義:
(1)復平面、實軸、虛軸:
點Z的橫坐標是a,縱坐標是b,復數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復數(shù)的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)
(2)復數(shù)的幾何意義:復數(shù)集C和復平面內所有的點所成的集合是一一對應關系,即
這是因為,每一個復數(shù)有復平面內惟一的一個點和它對應;反過來,復平面內的每一個點,有惟一的一個復數(shù)和它對應。
這就是復數(shù)的一種幾何意義,也就是復數(shù)的另一種表示方法,即幾何表示方法。
復數(shù)的模:
復數(shù)z=a+bi(a、b∈R)在復平面上對應的點Z(a,b)到原點的距離叫復數(shù)的模,記為|Z|,即|Z|=
虛數(shù)單位i:
(1)它的平方等于-1,即i2=-1;
(2)實數(shù)可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立
(3)i與-1的關系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復數(shù)模的性質:
復數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關系:
對于復數(shù)a+bi(a、b∈R),當且僅當b=0時,復數(shù)a+bi(a、b∈R)是實數(shù)a;當b≠0時,復數(shù)z=a+bi叫做虛數(shù);當a=0且b≠0時,z=bi叫做純虛數(shù);當且僅當a=b=0時,z就是實數(shù)0。
高三上學期數(shù)學復習知識點
1.滿足二元一次不等式(組)的x和y的取值構成有序數(shù)對(x,y),稱為二元一次不等式(組)的一個解,所有這樣的有序數(shù)對(x,y)構成的集合稱為二元一次不等式(組)的解集。
2.二元一次不等式(組)的每一個解(x,y)作為點的坐標對應平面上的一個點,二元一次不等式(組)的解集對應平面直角坐標系中的一個半平面(平面區(qū)域)。
3.直線l:Ax+By+C=0(A、B不全為零)把坐標平面劃分成兩部分,其中一部分(半個平面)對應二元一次不等式Ax+By+C>0(或≥0),另一部分對應二元一次不等式Ax+By+C<0(或≤0)。
4.已知平面區(qū)域,用不等式(組)表示它,其方法是:在所有直線外任取一點(如本題的原點(0,0)),將其坐標代入Ax+By+C,判斷正負就可以確定相應不等式。
5.一個二元一次不等式表示的平面區(qū)域是相應直線劃分開的半個平面,一般用特殊點代入二元一次不等式檢驗就可以判定,當直線不過原點時常選原點檢驗,當直線過原點時,常選(1,0)或(0,1)代入檢驗,二元一次不等式組表示的平面區(qū)域是它的各個不等式所表示的平面區(qū)域的公共部分,注意邊界是實線還是虛線的含義?!熬€定界,點定域”。
6.滿足二元一次不等式(組)的整數(shù)x和y的取值構成的有序數(shù)對(x,y),稱為這個二元一次不等式(組)的一個解。所有整數(shù)解對應的點稱為整點(也叫格點),它們都在這個二元一次不等式(組)表示的平面區(qū)域內。
7.畫二元一次不等式Ax+By+C≥0所表示的平面區(qū)域時,應把邊界畫成實線,畫二元一次不等式Ax+By+C>0所表示的平面區(qū)域時,應把邊界畫成虛線。
8.若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的同側,則Ax0+By0+C與Ax1+Byl+C符號相同;若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的兩側,則Ax0+By0+C與Ax1+Byl+C符號相反。
9.從實際問題中抽象出二元一次不等式(組)的步驟是:
(1)根據(jù)題意,設出變量;
(2)分析問題中的變量,并根據(jù)各個不等關系列出常量與變量x,y之間的不等式;
(3)把各個不等式連同變量x,y有意義的實際范圍合在一起,組成不等式組。
高三上學期數(shù)學期中知識點
①正棱錐各側棱相等,各側面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).
②正棱錐的高、斜高和斜高在底面內的射影組成一個直角三角形,正棱錐的高、側棱、側棱在底面內的射影也組成一個直角三角形.
特殊棱錐的頂點在底面的射影位置:
①棱錐的側棱長均相等,則頂點在底面上的射影為底面多邊形的外心.
②棱錐的側棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心.
③棱錐的各側面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內心.
④棱錐的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內心.
⑤三棱錐有兩組對棱垂直,則頂點在底面的射影為三角形垂心.
⑥三棱錐的三條側棱兩兩垂直,則頂點在底面上的射影為三角形的垂心.
⑦每個四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等于球半徑;
⑧每個四面體都有內切球,球心