高一數(shù)學必修4教案模板精選
高一數(shù)學必修4教案怎么做才好?數(shù)學一旦通過邏輯推理證明了結(jié)論,那么這個結(jié)論也就是正確的。今天小編在這給大家整理了高一數(shù)學必修4教案,接下來隨著小編一起來看看吧!
高一數(shù)學必修4教案【1】
《任意角和弧度制》教案
教學準備
教學目標
一、知識與技能
(1)理解并掌握弧度制的定義;(2)領(lǐng)會弧度制定義的合理性;(3)掌握并運用弧度制表示的弧長公式、扇形面積公式;(4)熟練地進行角度制與弧度制的換算;(5)角的集合與實數(shù)集 之間建立的一一對應關(guān)系.(6) 使學生通過弧度制的學習,理解并認識到角度制與弧度制都是對角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系.
二、過程與方法
創(chuàng)設情境,引入弧度制度量角的大小,通過探究理解并掌握弧度制的定義,領(lǐng)會定義的合理性.根據(jù)弧度制的定義推導并運用弧長公式和扇形面積公式.以具體的實例學習角度制與弧度制的互化,能正確使用計算器.
三、情態(tài)與價值
通過本節(jié)的學習,使同學們掌握另一種度量角的單位制---弧度制,理解并認識到角度制與弧度制都是對角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系.角的概念推廣以后,在弧度制下,角的集合與實數(shù)集 之間建立了一一對應關(guān)系:即每一個角都有唯一的一個實數(shù)(即這個角的弧度數(shù))與它對應;反過來,每一個實數(shù)也都有唯一的一個角(即弧度數(shù)等于這個實數(shù)的角)與它對應,為下一節(jié)學習三角函數(shù)做好準備.liuxue86.com
教學重難點
重點: 理解并掌握弧度制定義;熟練地進行角度制與弧度制地互化換算;弧度制的運用.
難點: 理解弧度制定義,弧度制的運用.
教學工具
投影儀等
教學過程
一、 創(chuàng)設情境,引入新課
師:有人問:海口到三亞有多遠時,有人回答約250公里,但也有人回答約160英里,請問那一種回答是正確的?(已知1英里=1.6公里)
顯然,兩種回答都是正確的,但為什么會有不同的數(shù)值呢?那是因為所采用的度量制不同,一個是公里制,一個是英里制.他們的長度單位是不同的,但是,他們之間可以換算:1英里=1.6公里.
在角度的度量里面,也有類似的情況,一個是角度制,我們已經(jīng)不再陌生,另外一個就是我們這節(jié)課要研究的角的另外一種度量制---弧度制.
二、講解新課
1.角度制規(guī)定:將一個圓周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.
弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制與角度制之間如何換算?請看課本,自行解決上述問題.
2.弧度制的定義
長度等于半徑長的圓弧所對的圓心角叫做1弧度角,記作1,或1弧度,或1(單位可以省略不寫).
(師生共同活動)探究:如圖,半徑為的圓的圓心與原點重合,角的終邊與軸的正半軸重合,交圓于點,終邊與圓交于點.請完成表格.
我們知道,角有正負零角之分,它的弧度數(shù)也應該有正負零之分,如-π,-2π等等,一般地, 正角的弧度數(shù)是一個正數(shù),負角的弧度數(shù)是一個負數(shù),零角的弧度數(shù)是0,角的正負主要由角的旋轉(zhuǎn)方向來決定.
角的概念推廣以后,在弧度制下,角的集合與實數(shù)集R之間建立了一一對應關(guān)系:即每一個角都有唯一的一個實數(shù)(即這個角的弧度數(shù))與它對應;反過來,每一個實數(shù)也都有唯一的一個角(即弧度數(shù)等于這個實數(shù)的角)與它對應.
四、課堂小結(jié)
度數(shù)與弧度數(shù)的換算也可借助“計算器”《中學數(shù)學用表》進行;在具體運算時,“弧度”二字和單位符號“rad”可以省略 如:3表示3rad sinp表示prad角的正弦應確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實數(shù)的集合之間建立一種一一對應的關(guān)系。
五、作業(yè)布置
作業(yè):習題1.1 A組第7,8,9題.
課后小結(jié)
度數(shù)與弧度數(shù)的換算也可借助“計算器”《中學數(shù)學用表》進行;在具體運算時,“弧度”二字和單位符號“rad”可以省略 如:3表示3rad sinp表示prad角的正弦應確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實數(shù)的集合之間建立一種一一對應的關(guān)系。
課后習題
作業(yè):習題1.1 A組第7,8,9題.
板書
高一數(shù)學必修4教案【2】
《任意角的三角函數(shù)》教案
教學準備
教學目標
1、 知識與技能
(1)能根據(jù)三角函數(shù)的定義,導出同角三角函數(shù)的基本關(guān)系;(2)能正確運用進行三角函數(shù)式的求值運算;(3)能運用同角三角函數(shù)的基本關(guān)系求一些三角函數(shù)(式)的值,并從中了解一些三角運算的基本技巧;(4)運用同角三角函數(shù)的基本關(guān)系式進行三角函數(shù)恒等式的證明。
2、 過程與方法
回憶初中所學的幾個三角函數(shù)之間的關(guān)系,用高中所學的同角三角函數(shù)之間的關(guān)系試著進行證明;掌握幾種同角三角函數(shù)關(guān)系的應用;掌握在具體應用中的一定技巧和方法;理解并掌握同角三角關(guān)系的簡單變形;提高學生恒等變形的能力,提高分析問題和解決問題的能力。
3、 情感態(tài)度與價值觀
通過本節(jié)的學習,使同學們加深理解基本關(guān)系在本章中的地位;認識事物間存在的內(nèi)在聯(lián)系,使學生面對問題養(yǎng)成勤于思考的習慣;培養(yǎng)學生良好的學習方法,進一步樹立化歸的數(shù)學思想方法。
教學重難點
重點: 同角三角函數(shù)之間的基本關(guān)系,化簡與證明。
難點: 化簡與證明中的符號,同角三角函數(shù)關(guān)系的靈活運用。
教學工具
投影儀
教學過程
【創(chuàng)設情境,揭示課題】
同角三角函數(shù)之間的關(guān)系我們在初中就已經(jīng)學過,只不過當時應用不是很多,那么到底有哪些?它們成立的條件是什么?學習實踐中,你還發(fā)現(xiàn)了哪些關(guān)系?今天這節(jié)課,我們就來討論這些問題。
【探究新知】
在初中我們已經(jīng)知道,對于同一個銳角α,存在關(guān)系式:
2.學生課堂練習
教材P66練習1和P67練習2
五、歸納整理,整體認識
(1)請學生回顧本節(jié)課所學過的知識內(nèi)容有哪些?所涉及到主要數(shù)學思想方法有那些?
(2)在本節(jié)課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?
六、布置作業(yè)
教材P68習題中1—6
課后小結(jié)
歸納整理,整體認識
(1)請學生回顧本節(jié)課所學過的知識內(nèi)容有哪些?所涉及到主要數(shù)學思想方法有那些?
(2)在本節(jié)課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?
課后習題
作業(yè)
教材P68習題中1、6
板書
略
高一數(shù)學必修4教案【3】
《三角函數(shù)的誘導公式》教案
教學準備
教學目標
熟練掌握三角函數(shù)式的求值
教學重難點
熟練掌握三角函數(shù)式的求值
教學過程
【知識點精講】
三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應用, 掌握公式的逆用和變形
三角函數(shù)式的求值的類型一般可分為:
(1)“給角求值”:給出非特殊角求式子的值。仔細觀察非特殊角的特點,找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角
(2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解
(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
(4)“給式求值”:給出一些較復雜的三角式的值,求其他式子的值。將已知式或所求式進行化簡,再求之
三角函數(shù)式常用化簡方法:切割化弦、高次化低次
注意點:靈活角的變形和公式的變形
重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論
【例題選講】
課堂小結(jié)】
三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應用, 掌握公式的逆用和變形
三角函數(shù)式的求值的類型一般可分為:
(1)“給角求值”:給出非特殊角求式子的值。仔細觀察非特殊角的特點,找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角
(2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解
(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
(4)“給式求值”:給出一些較復雜的三角式的值,求其他式子的值。將已知式或所求式進行化簡,再求之
三角函數(shù)式常用化簡方法:切割化弦、高次化低次
注意點:靈活角的變形和公式的變形
重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論
【作業(yè)布置】
P172能力提高5,6,7,8高考預測
高一數(shù)學必修4教案【4】
《函數(shù)y=Asin(ωx+φ)的圖像》教案
教學準備
教學目標
1、 知識與技能
(1)進一步理解表達式y(tǒng)=Asin(ωx+φ),掌握A、φ、ωx+φ的含義;(2)熟練掌握由 的圖象得到函數(shù) 的圖象的方法;(3)會由函數(shù)y=Asin(ωx+φ)的圖像討論其性質(zhì);(4)能解決一些綜合性的問題。
2、 過程與方法
通過具體例題和學生練習,使學生能正確作出函數(shù)y=Asin(ωx+φ)的圖像;并根據(jù)圖像求解關(guān)系性質(zhì)的問題;講解例題,總結(jié)方法,鞏固練習。
3、 情感態(tài)度與價值觀
通過本節(jié)的學習,滲透數(shù)形結(jié)合的思想;通過學生的親身實踐,引發(fā)學生學習興趣;創(chuàng)設問題情景,激發(fā)學生分析、探求的學習態(tài)度;讓學生感受數(shù)學的嚴謹性,培養(yǎng)學生邏輯思維的縝密性。
教學重難點
重點:函數(shù)y=Asin(ωx+φ)的圖像,函數(shù)y=Asin(ωx+φ)的性質(zhì)。
難點: 各種性質(zhì)的應用。
教學工具
投影儀
教學過程
【創(chuàng)設情境,揭示課題】
函數(shù)y=Asin(ωx+φ)的性質(zhì)問題,是三角函數(shù)中的重要問題,是高中數(shù)學的重點內(nèi)容,也是高考的熱點,因為,函數(shù)y=Asin(ωx+φ)在我們的實際生活中可以找到很多模型,與我們的生活息息相關(guān)。
五、歸納整理,整體認識
(1)請學生回顧本節(jié)課所學過的知識內(nèi)容有哪些?所涉及到主要數(shù)學思想方法有那些?
(2)在本節(jié)課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?
六、布置作業(yè): 習題1-7第4,5,6題.
課后小結(jié)
歸納整理,整體認識
(1)請學生回顧本節(jié)課所學過的知識內(nèi)容有哪些?所涉及到主要數(shù)學思想方法有那些?
(2)在本節(jié)課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?
課后習題
作業(yè): 習題1-7第4,5,6題.
板書
略
高一數(shù)學必修4教案【5】
《三角函數(shù)的圖象與性質(zhì)》教案
教學準備
教學目標
1、 知識與技能
(1)了解周期現(xiàn)象在現(xiàn)實中廣泛存在;(2)感受周期現(xiàn)象對實際工作的意義;(3)理解周期函數(shù)的概念;(4)能熟練地判斷簡單的實際問題的周期;(5)能利用周期函數(shù)定義進行簡單運用。
2、 過程與方法
通過創(chuàng)設情境:單擺運動、時鐘的圓周運動、潮汐、波浪、四季變化等,讓學生感知周期現(xiàn)象;從數(shù)學的角度分析這種現(xiàn)象,就可以得到周期函數(shù)的定義;根據(jù)周期性的定義,再在實踐中加以應用。
3、 情感態(tài)度與價值觀
通過本節(jié)的學習,使同學們對周期現(xiàn)象有一個初步的認識,感受生活中處處有數(shù)學,從而激發(fā)學生的學習積極性,培養(yǎng)學生學好數(shù)學的信心,學會運用聯(lián)系的觀點認識事物。
教學重難點
重點: 感受周期現(xiàn)象的存在,會判斷是否為周期現(xiàn)象。
難點: 周期函數(shù)概念的理解,以及簡單的應用。
教學工具
投影儀
教學過程
【創(chuàng)設情境,揭示課題】
同學們:我們生活在海南島非常幸福,可以經(jīng)常看到大海,陶冶我們的情操。眾所周知,海水會發(fā)生潮汐現(xiàn)象,大約在每一晝夜的時間里,潮水會漲落兩次,這種現(xiàn)象就是我們今天要學到的周期現(xiàn)象。再比如,[取出一個鐘表,實際操作]我們發(fā)現(xiàn)鐘表上的時針、分針和秒針每經(jīng)過一周就會重復,這也是一種周期現(xiàn)象。所以,我們這節(jié)課要研究的主要內(nèi)容就是周期現(xiàn)象與周期函數(shù)。(板書課題)
【探究新知】
1.我們已經(jīng)知道,潮汐、鐘表都是一種周期現(xiàn)象,請同學們觀察錢塘江潮的圖片(投影圖片),注意波浪是怎樣變化的?可見,波浪每隔一段時間會重復出現(xiàn),這也是一種周期現(xiàn)象。請你舉出生活中存在周期現(xiàn)象的例子。(單擺運動、四季變化等)
(板書:一、我們生活中的周期現(xiàn)象)
2.那么我們怎樣從數(shù)學的角度研究周期現(xiàn)象呢?教師引導學生自主學習課本P3——P4的相關(guān)內(nèi)容,并思考回答下列問題:
①如何理解“散點圖”?
②圖1-1中橫坐標和縱坐標分別表示什么?
③如何理解圖1-1中的“H/m”和“t/h”?
④對于周期函數(shù)的定義,你的理解是怎樣?
以上問題都由學生來回答,教師加以點撥并總結(jié):周期函數(shù)定義的理解要掌握三個條件,即存在不為0的常數(shù)T;x必須是定義域內(nèi)的任意值;f(x+T)=f(x)。
(板書:二、周期函數(shù)的概念)
3.[展示投影]練習:
(1) 已知函數(shù)f(x)滿足對定義域內(nèi)的任意x,均存在非零常數(shù)T,使得f(x+T)=f(x)。
求f(x+2T) ,f(x+3T)
略解:f(x+2T)=f[(x+T)+T]=f(x+T)=f(x)
f(x+3T)=f[(x+2T)+T]=f(x+2T)=f(x)
本題小結(jié),由學生完成,總結(jié)出“周期函數(shù)的周期有無數(shù)個”,教師指出一般情況下,為避免引起混淆,特指最小正周期。liuxue86.com
(2)已知函數(shù)f(x)是R上的周期為5的周期函數(shù),且f(1)=2005,求f(11)
略解:f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2005
(3)已知奇函數(shù)f(x)是R上的函數(shù),且f(1)=2,f(x+3)=f(x),求f(8)
略解:f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2
【鞏固深化,發(fā)展思維】
1.請同學們先自主學習課本P4倒數(shù)第五行——P5倒數(shù)第四行,然后各個學習小組之間展開合作交流。
2.例題講評
例1.地球圍繞著太陽轉(zhuǎn),地球到太陽的距離y是時間t的函數(shù)嗎?如果是,這個函數(shù)
y=f(t)是不是周期函數(shù)?
例2.圖1-4(見課本)是鐘擺的示意圖,擺心A到鉛垂線MN的距離y是時間t的函數(shù),y=g(t)。根據(jù)鐘擺的知識,容易說明g(t+T)=g(t),其中T為鐘擺擺動一周(往返一次)所需的時間,函數(shù)y=g(t)是周期函數(shù)。若以鐘擺偏離鉛垂線MN的角θ的度數(shù)為變量,根據(jù)物理知識,擺心A到鉛垂線MN的距離y也是θ的周期函數(shù)。
例3.圖1-5(見課本)是水車的示意圖,水車上A點到水面的距離y是時間t的函數(shù)。假設水車5min轉(zhuǎn)一圈,那么y的值每經(jīng)過5min就會重復出現(xiàn),因此,該函數(shù)是周期函數(shù)。
3.小組課堂作業(yè)
(1) 課本P6的思考與交流
(2) (回答)今天是星期三那么7k(k∈Z)天后的那一天是星期幾?7k(k∈Z)天前的那一天是星期幾?100天后的那一天是星期幾?
五、歸納整理,整體認識
(1)請學生回顧本節(jié)課所學過的知識內(nèi)容有哪些?所涉及到的主要數(shù)學思想方法有那些?
(2)在本節(jié)課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?
六、布置作業(yè)
1.作業(yè):習題1.1第1,2,3題.
2.多觀察一些日常生活中的周期現(xiàn)象的例子,進一步理解它的特點.
課后小結(jié)
歸納整理,整體認識
(1)請學生回顧本節(jié)課所學過的知識內(nèi)容有哪些?所涉及到的主要數(shù)學思想方法有那些?
(2)在本節(jié)課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?
課后習題
作業(yè)
1.作業(yè):習題1.1第1,2,3題.
2.多觀察一些日常生活中的周期現(xiàn)象的例子,進一步理解它的特點.
板書
略
高一數(shù)學必修4教案模板精選相關(guān)文章: