小學生發(fā)展邏輯思維的書籍
小學生發(fā)展邏輯思維的書籍
我們應該知道,教學過程不是單純的傳授和學習知識的過程,而是促進學生全面發(fā)展(當然包括邏輯思維能力的發(fā)展)的過程。從小學數(shù)學教學過程來說,數(shù)學知識和技能的掌握和思維能力(尤其是邏輯思維能力)的發(fā)展也是密不可分的。一方面,學生在理解和掌握數(shù)學知識的過程中,不斷地運用著各種思維方法和形式,如比較、分析、綜合、抽象、概括、判斷和推理;另一方面,在教學數(shù)學知識時,為運用思維方法和形式也提供了具體的內(nèi)容和材料。以下是學習啦小編為大家推薦的訓練小學生邏輯思維的書籍,希望大家喜歡!
訓練小學生邏輯思維的書籍
1. 小學生最喜愛的300個邏輯游戲
2. 哈佛給學生做的1400個思維游戲
3. 腦筋急轉(zhuǎn)彎6冊
4. 清華北大學生愛做的1500個游戲
5. 腦筋急轉(zhuǎn)彎 思維邏輯訓練智力益智開發(fā)
6. 一分鐘破案
7. 邏輯思維訓練1000題
8. 哈佛學生喜歡玩的智趣游戲
9. 提升邏輯思維的200個益智游戲
10. 邏輯思維訓練1200題(單卷)
11. 和福爾摩斯一起學思考:腦筋急轉(zhuǎn)彎
12. 訓練邏輯思維的16種經(jīng)典趣題
13. 全世界優(yōu)等生都在做的2000個思維游戲
14. 小學生靈動思維密碼全解:我是數(shù)學邏輯高手
小學生發(fā)展邏輯思維訓練題
1. 765×213÷27+765×327÷27
解:原式=765÷27×(213+327)= 765÷27×540=765×20=15300
2. (9999+9997+…+9001)-(1+3+…+999)
解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)
=9000+9000+…….+9000 (500個9000)
=4500000
3.19981999×19991998-19981998×19991999
解:(19981998+1)×19991998-19981998×19991999
=19981998×19991998-19981998×19991999+19991998
=19991998-19981998
=10000
4.(873×477-198)÷(476×874+199)
解:873×477-198=476×874+199
因此原式=1
5.2000×1999-1999×1998+1998×1997-1997×1996+„+2×1
解:原式=1999×(2000-1998)+1997×(1998-1996)+„
+3×(4-2)+2×1
=(1999+1997+„+3+1)×2=2000000。
6.297+293+289+„+209
解:(209+297)*23/2=5819
7. 有7個數(shù),它們的平均數(shù)是18。去掉一個數(shù)后,剩下6個數(shù)的平均數(shù)是19;再去掉一個數(shù)后,剩下的5個數(shù)的平均數(shù)是20。求去掉的兩個數(shù)的乘積。
解: 7*18-6*19=126-114=12
6*19-5*20=114-100=14
去掉的兩個數(shù)是12和14它們的乘積是12*14=168
8. 有七個排成一列的數(shù),它們的平均數(shù)是 30,前三個數(shù)的平均數(shù)是28,后五個數(shù)的平均數(shù)是33。求第三個數(shù)。
解:28×3+33×5-30×7=39。
9. 有兩組數(shù),第一組9個數(shù)的和是63,第二組的平均數(shù)是11,兩個組中所有數(shù)的平均數(shù)是8。問:第二組有多少個數(shù)?
解:設第二組有x個數(shù),則63+11x=8×(9+x),解得x=3。
10.小明參加了六次測驗,第三、第四次的平均分比前兩次的平均分多2分,比后兩次的平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得幾分? 解:第三、四次的成績和比前兩次的成績和多4分,比后兩次的成績和少4分,推知后兩次的成績和比前兩次的成績和多8分。因為后三次的成績和比前三次的成績和多9分,所以第四次比第三次多9-8=1(分)。
11. 媽媽每4天要去一次副食商店,每 5天要去一次百貨商店。媽媽平均每星期去這兩個商店幾次?(用小數(shù)表示)
解:每20天去9次,9÷20×7=3.15(次)。
12. 乙、丙兩數(shù)的平均數(shù)與甲數(shù)之比是13∶7,求甲、乙、丙三數(shù)的平均數(shù)與甲數(shù)之比。 解:以甲數(shù)為7份,則乙、丙兩數(shù)共13×2=26(份)
所以甲乙丙的平均數(shù)是(26+7)/3=11(份)
因此甲乙丙三數(shù)的平均數(shù)與甲數(shù)之比是11:7。
13. 五年級同學參加校辦工廠糊紙盒勞動,平均每人糊了76個。已知每人至少糊了70個,并且其中有一個同學糊了88個,如果不把這個同學計算在內(nèi),那么平均每人糊74個。糊得最快的同學最多糊了多少個?
解:當把糊了88個紙盒的同學計算在內(nèi)時,因為他比其余同學的平均數(shù)多88-74=14(個),而使大家的平均數(shù)增加了76-74=2(個),說明總?cè)藬?shù)是14÷2=7(人)。因此糊得最快的同學最多糊了
74×6-70×5=94(個)。
14. 甲、乙兩班進行越野行軍比賽,甲班以4.5千米/時的速度走了路程的一半,又以5.5千米/時的速度走完了另一半;乙班在比賽過程中,一半時間以4.5千米/時的速度行進,另一半時間以5.5千米/時的速度行進。問:甲、乙兩班誰將獲勝?
解:快速行走的路程越長,所用時間越短。甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程長,所以乙班獲勝。
15. 輪船從A城到B城需行3天,而從B城到A城需行4天。從A城放一個無動力的木筏,它漂到B城需多少天?
解:輪船順流用3天,逆流用4天,說明輪船在靜水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍。所以輪船順流行3天的路程等于水流3+3×7=24(天)的路程,即木筏從A城漂到B城需24天。
16. 小紅和小強同時從家里出發(fā)相向而行。小紅每分走52米,小強每分走70米,二人在途中的A處相遇。若小紅提前4分出發(fā),且速度不變,小強每分走90米,則兩人仍在A處相遇。小紅和小強兩人的家相距多少米?
解:因為小紅的速度不變,相遇地點不變,所以小紅兩次從出發(fā)到相遇的時間相同。也就是說,小強第二次比第一次少走4分。由
(70×4)÷(90-70)=14(分)
可知,小強第二次走了14分,推知第一次走了18分,兩人的家相距
(52+70)×18=2196(米)。
17. 小明和小軍分別從甲、乙兩地同時出發(fā),相向而行。若兩人按原定速度前進,則
4時相遇;若兩人各自都比原定速度多1千米/時,則3時相遇。甲、乙兩地相距多少千米?
解:每時多走1千米,兩人3時共多走6千米,這6千米相當于兩人按原定速度1時走的距離。所以甲、乙兩地相距6×4=24(千米)
小學生發(fā)展邏輯思維的書相關(guān)文章:
1.邏輯思維書單