2019高考數(shù)學公式快速記憶口訣
數(shù)學公式繁多,想要方便自己記憶就要學習一切技巧,下面學習啦小編就為大家?guī)砹?019高考數(shù)學公式快速記憶口訣,希望對你有所啟發(fā)。
高中數(shù)學公式定理記憶口訣
一、不等式
解不等式的途徑,利用函數(shù)的性質。對指無理不等式,化為有理不等式。
高次向著低次代,步步轉化要等價。數(shù)形之間互轉化,幫助解答作用大。
證不等式的方法,實數(shù)性質威力大。求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。
還有重要不等式,以及數(shù)學歸納法。圖形函數(shù)來幫助,畫圖建模構造法。
二、數(shù)列
等差等比兩數(shù)列,通項公式N項和。兩個有限求極限,四則運算順序換。
數(shù)列問題多變幻,方程化歸整體算。數(shù)列求和比較難,錯位相消巧轉換,
取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:
一算二看三聯(lián)想,猜測證明不可少。還有數(shù)學歸納法,證明步驟程序化:
首先驗證再假定,從K向著K加1,推論過程須詳盡,歸納原理來肯定。
三、立體幾何
點線面三位一體,柱錐臺球為代表。距離都從點出發(fā),角度皆為線線成。
垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環(huán)現(xiàn)。
方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。射影概念很重要,對于解題最關鍵。
異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。
四、平面解析幾何
有向線段直線圓,橢圓雙曲拋物線,參數(shù)方程極坐標,數(shù)形結合稱典范。
笛卡爾的觀點對,點和有序實數(shù)對,兩者-一來對應,開創(chuàng)幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說待定系數(shù)法,實為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。
四件工具是法寶,坐標思想?yún)?shù)好;平面幾何不能丟,旋轉變換復數(shù)求。
解析幾何是幾何,得意忘形學不活。圖形直觀數(shù)入微,數(shù)學本是數(shù)形學。
五、集合與函數(shù)
內容子交并補集,還有冪指對函數(shù)。性質奇偶與增減,觀察圖象最明顯。
復合函數(shù)式出現(xiàn),性質乘法法則辨,若要詳細證明它,還須將那定義抓。
指數(shù)與對數(shù)函數(shù),兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。
函數(shù)定義域好求。分母不能等于0,偶次方根須非負,零和負數(shù)無對數(shù);
正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實數(shù)集,多種情況求交集。
兩個互為反函數(shù),單調性質都相同;圖象互為軸對稱,Y=X是對稱軸;
求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域。
冪函數(shù)性質易記,指數(shù)化既約分數(shù);函數(shù)性質看指數(shù),奇母奇子奇函數(shù),
奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內,函數(shù)增減看正負。
六、復數(shù)
虛數(shù)單位i一出,數(shù)集擴大到復數(shù)。一個復數(shù)一對數(shù),橫縱坐標實虛部。
對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數(shù)形來結合。代數(shù)幾何三角式,相互轉化試一試。
代數(shù)運算的實質,有i多項式運算。i的正整數(shù)次慕,四個數(shù)值周期現(xiàn)。
一些重要的結論,熟記巧用得結果。虛實互化本領大,復數(shù)相等來轉化。
利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。
三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。
輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,
兩個不會為實數(shù),比較大小要不得。復數(shù)實數(shù)很密切,須注意本質區(qū)別。
七、三角函數(shù)
三角函數(shù)是函數(shù),象限符號坐標注。函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。
同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;
中心記上數(shù)字1,連結頂點三角形;向下三角平方和,倒數(shù)關系是對角,
變成稅角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,
將其后者視銳角,符號原來函數(shù)判。兩角和的余弦值,化為單角好求值,
余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。
計算證明角先行,注意結構函數(shù)名,保持基本量不變,繁難向著簡易變。
逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;
1加余弦想余弦,1減余弦想正弦,冪升一次角減半,升冪降次它為范;
三角函數(shù)反函數(shù),實質就是求角度,先求三角函數(shù)值,再判角取值范圍;
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集
數(shù)學如何簡單高效提分
01高中數(shù)學口訣C
我的名字叫做“1”,自然數(shù)中是小弟;
正弦、余弦我最大, 真分數(shù)比我低,稟性忠厚又老實,“乘以”“除以”沒關系,兩數(shù)之積若是我,互為倒數(shù)無置疑。
同學莫把我藐視,我的作用妙無比。
說明:在恒等變形時,巧用1
(如將1 與tg45°,tgα·ctgα,sin2α+cos2α,lg10,a0(a≠0),x/x,x·1/x 互化)
02式子無意義三訣
分母不得為零,偶次方根為負,零負沒有對數(shù)。
注:開偶次方時,根號中式子的值為負數(shù)時,沒有意義。
03多個有理數(shù)相乘符號法則歌
多個有理數(shù)相乘,負號當家起作用;
奇負偶正規(guī)律定,一數(shù)為0 必得0。
說明:
幾個不等于0的有理數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定
(“負號當家起作用”)。
當負因數(shù)有奇數(shù)個時,積為負;
當負因數(shù)有偶數(shù)個時,積為正。
幾個有理數(shù)相乘,其中若有一個因數(shù)為0,則積為0。
04常用速算口訣(三則)
(一)十幾與十幾相乘
十幾乘十幾,方法最容易,保留十位加個位,添零再加個位積。
證明:設m、n 為1 至9 的任意整數(shù),則
(10+m)(10+n)
=100+10m+10n+mn
=10[10+(m+n)]+mn。
(二)十位數(shù)字相同、個位數(shù)字互補(和為10)的兩位數(shù)相乘
例:17×l6
∵10+(7+6)=23(第三句),
∴230+7×6=230+42=272(第四句),
∴17×16=272。
十位同,個位補,兩數(shù)相乘要記?。菏患右怀耸?,個位之積緊相隨。
證明:設m、n 為1 到9 的任意整數(shù),則
(10m+n)[10m+(10-n)]
=100m(m+1)+n(10-n)。
例:34×36
∵(3+1)×3=4×3=12(第三句),
個位之積4×6=24,
∴34×36=1224。(第四句)
注意:兩個數(shù)之積小于10 時,十位數(shù)字應寫零。
(三)用11 去乘其它任意兩位數(shù)
兩位數(shù)乘十一,此數(shù)兩邊去,中間留個空,用和補進去。
證明:設m、n 為1 至9 的任意整數(shù),則
(10m+n)×(10+1)
=100m+10(m+n)+n。
例:36×ll
∵306+90=396,
∴36×11=396。
注意:當兩位數(shù)字之和大于10 時,要進到百位上,那么百位數(shù)數(shù)字就成為m+1,
如:
84×11
∵804+12×10
=804+120
=924,
∴84×11=924。
05合并同類項法則
合并同類項,法則不能忘;
只求系數(shù)代數(shù)和,字母、指數(shù)不變樣。
06分解因式歌
首先提取公因式,然后考慮用公式。
十字相乘試一試,分組分得要合適。四種方法反復試,分解完成連乘式。
07算術根運算法則歌
絕對值,算術根,永不為負記在心。
兩個好像親姐妹,形影相隨不離分。兩人一旦分了手,謬誤可能就降臨。
說明:絕對值和算術根都是非負數(shù)。
對于算術根的運算,一般是先化成絕對值的形式,再根據(jù)絕對值的概念,化去絕對值符號,這樣可以減少差錯。
08二元二次方程組一般解法
未知項,成比例,消元降次都可以。
方程一邊等于零,因式分解再降次。
方程缺了一次項,常數(shù)消去再求解。
09一元一次不等式的解法
如有分母去分母,如有括號去括號。
常數(shù)都往右邊挪,未知都往左邊靠。
如有同類須合并,化為標準再求解。
注:未知指未知數(shù)。
10一元一次不等式組的四種情況
大大取較大,小小取較小,小大,大小中間找。
小小,大大解不了。
11不等式解集的幾種情況
兩大從大,兩小從小,一大一小就相連,不能相連是空集。
相關文章:
3.高中數(shù)學必修四三角函數(shù)誘導公式的記憶口訣
5.快速記憶方法