特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學習啦 > > 高二數(shù)學知識點總結

高二數(shù)學知識點總結

時間: 康華0 分享

高二數(shù)學知識點總結5篇

端正學習態(tài)度很重要,你用什么樣的態(tài)度對待學習,學習就用什么樣的成績來回報你。下面是小編為大家整理的高二數(shù)學知識點總結,如果大家喜歡可以分享給身邊的朋友。

高二數(shù)學知識點總結

高二數(shù)學知識點總結精選篇1

數(shù)列

1、數(shù)列的定義及數(shù)列的通項公式:

① an?f(n),數(shù)列是定義域為N

的函數(shù)f(n),當n依次取1,2,???時的一列函數(shù)值② i。歸納法

若S0?0,則an不分段;若S0?0,則an分段iii。若an?1?pan?q,則可設an?1?m?p(an?m)解得m,得等比數(shù)列?an?m?

?Sn?f(an)

iv。若Sn?f(an),先求a

1?得到關于an?1和an的遞推關系式

S?f(a)n?1?n?1?Sn?2an?1

例如:Sn?2an?1先求a1,再構造方程組:??(下減上)an?1?2an?1?2an

?Sn?1?2an?1?1

2、等差數(shù)列:

①定義:a

n?1?an=d(常數(shù)),證明數(shù)列是等差數(shù)列的重要工具。 ②通項d?0時,an為關于n的一次函數(shù);

d>0時,an為單調(diào)遞增數(shù)列;d<0時,a

n為單調(diào)遞減數(shù)列。

n(n?1)2

③前n?na1?

d,

d?0時,Sn是關于n的不含常數(shù)項的一元二次函數(shù),反之也成立。

④性質(zhì):ii。若?an?為等差數(shù)列,則am,am?k,am?2k,…仍為等差數(shù)列。 iii。若?an?為等差數(shù)列,則Sn,S2n?Sn,S3n?S2n,…仍為等差數(shù)列。 iv若A為a,b的等差中項,則有A?3。等比數(shù)列:

①定義:

an?1an

?q(常數(shù)),是證明數(shù)列是等比數(shù)列的重要工具。

a?b2

②通項時為常數(shù)列)。

③。前n項和

需特別注意,公比為字母時要討論。

高二數(shù)學知識點總結精選篇2

異面直線定義:不同在任何一個平面內(nèi)的兩條直線

異面直線性質(zhì):既不平行,又不相交。

異面直線判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線

異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。

求異面直線所成角步驟:

A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。B、證明作出的角即為所求角C、利用三角形來求角

(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補。

(8)空間直線與平面之間的位置關系

直線在平面內(nèi)——有無數(shù)個公共點。

三種位置關系的符號表示:aαa∩α=Aaα

(9)平面與平面之間的位置關系:平行——沒有公共點;αβ

相交——有一條公共直線。α∩β=b

2、空間中的平行問題

(1)直線與平面平行的判定及其性質(zhì)

線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。

線線平行線面平行

線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,

那么這條直線和交線平行。線面平行線線平行

(2)平面與平面平行的判定及其性質(zhì)

兩個平面平行的判定定理

(1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行

(線面平行→面面平行),

(2)如果在兩個平面內(nèi),各有兩組相交直線對應平行,那么這兩個平面平行。

(線線平行→面面平行),

(3)垂直于同一條直線的兩個平面平行,

兩個平面平行的性質(zhì)定理

(1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行。(面面平行→線面平行)

(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)

3、空間中的垂直問題

(1)線線、面面、線面垂直的定義

兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。

線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。

平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。

(2)垂直關系的判定和性質(zhì)定理

線面垂直判定定理和性質(zhì)定理

判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。

性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。

面面垂直的判定定理和性質(zhì)定理

判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。

性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。

4、空間角問題

(1)直線與直線所成的角

兩平行直線所成的角:規(guī)定為。

兩條相交直線所成的`角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。

兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

(2)直線和平面所成的角

平面的平行線與平面所成的角:規(guī)定為。平面的垂線與平面所成的角:規(guī)定為。

平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角。

求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”。

在“作角”時依定義關鍵作射影,由射影定義知關鍵在于斜線上一點到面的垂線,

在解題時,注意挖掘題設中主要信息:

(1)斜線上一點到面的垂線;

(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。

(3)二面角和二面角的平面角

二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。

二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。

直二面角:平面角是直角的二面角叫直二面角。

兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

求二面角的方法

定義法:在棱上選擇有關點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角

垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

高二數(shù)學知識點總結精選篇3

一、集合、簡易邏輯(14課時,8個)

1、集合;

2、子集;

3、補集;

4、交集;

5、并集;

6、邏輯連結詞;

7、四種命題;

8、充要條件。

二、函數(shù)(30課時,12個)

1、映射;

2、函數(shù);

3、函數(shù)的單調(diào)性;

4、反函數(shù);

5、互為反函數(shù)的函數(shù)圖象間的關系;

6、指數(shù)概念的擴充;

7、有理指數(shù)冪的運算;

8、指數(shù)函數(shù);

9、對數(shù);

10、對數(shù)的運算性質(zhì);

11、對數(shù)函數(shù)。

12、函數(shù)的應用舉例。

三、數(shù)列(12課時,5個)

1、數(shù)列;

2、等差數(shù)列及其通項公式;

3、等差數(shù)列前n項和公式;

4、等比數(shù)列及其通頂公式;

5、等比數(shù)列前n項和公式。

四、三角函數(shù)(46課時,17個)

1、角的概念的推廣;

2、弧度制;

3、任意角的三角函數(shù);

4、單位圓中的三角函數(shù)線;

5、同角三角函數(shù)的基本關系式;

6、正弦、余弦的誘導公式;

7、兩角和與差的正弦、余弦、正切;

8、二倍角的正弦、余弦、正切;

9、正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);

10、周期函數(shù);

11、函數(shù)的奇偶性;

12、函數(shù)的圖象;

13、正切函數(shù)的圖象和性質(zhì);

14、已知三角函數(shù)值求角;

15、正弦定理;

16、余弦定理;

17、斜三角形解法舉例。

五、平面向量(12課時,8個)

1、向量;

2、向量的加法與減法;

3、實數(shù)與向量的積;

4、平面向量的坐標表示;

5、線段的定比分點;

6、平面向量的數(shù)量積;

7、平面兩點間的距離;

8、平移。

六、不等式(22課時,5個)

1、不等式;

2、不等式的基本性質(zhì);

3、不等式的證明;

4、不等式的解法;

5、含絕對值的不等式。

七、直線和圓的方程(22課時,12個)

1、直線的傾斜角和斜率;

2、直線方程的點斜式和兩點式;

3、直線方程的一般式;

4、兩條直線平行與垂直的條件;

5、兩條直線的交角;

6、點到直線的距離;

7、用二元一次不等式表示平面區(qū)域;

8、簡單線性規(guī)劃問題;

9、曲線與方程的概念;

10、由已知條件列出曲線方程;

11、圓的標準方程和一般方程;

12、圓的參數(shù)方程。

高二數(shù)學知識點總結精選篇4

一、直線與圓:

1、直線的傾斜角的范圍是

在平面直角坐標系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當直線與軸重合或平行時,規(guī)定傾斜角為0;

2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα。

過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導的方法。

3、直線方程:⑴點斜式:直線過點斜率為,則直線方程為,

⑵斜截式:直線在軸上的截距為和斜率,則直線方程為

4、,①∥,;②。

直線與直線的位置關系:

(1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=0

5、點到直線的距離公式;

兩條平行線與的距離是

6、圓的標準方程:。⑵圓的一般方程:

注意能將標準方程化為一般方程

7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線。

8、直線與圓的位置關系,通常轉(zhuǎn)化為圓心距與半徑的關系,或者利用垂徑定理,構造直角三角形解決弦長問題。①相離②相切③相交

9、解決直線與圓的關系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構成直角三角形)直線與圓相交所得弦長

二、圓錐曲線方程:

1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a<2c;③e=;④實軸長為2a,虛軸長為2b,焦距為2c;漸進線或c2=a2+b2

3、拋物線:①方程y2=2px注意還有三個,能區(qū)別開口方向;②定義:|PF|=d焦點F(,0),準線x=-;③焦半徑;焦點弦=x1+x2+p;

4、直線被圓錐曲線截得的弦長公式:

5、注意解析幾何與向量結合問題:1、,。(1);(2)。

2、數(shù)量積的定義:已知兩個非零向量a和b,它們的夾角為θ,則數(shù)量|a||b|cosθ叫做a與b的數(shù)量積,記作a·b,即

3、模的計算:|a|=。算??梢韵人阆蛄康钠椒?/p>

4、向量的運算過程中完全平方公式等照樣適用:

三、直線、平面、簡單幾何體:

1、學會三視圖的分析:

2、斜二測畫法應注意的地方:

(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x軸的線段長不變,平行于y軸的線段長減半。(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度。

3、表(側(cè))面積與體積公式:

⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h

⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:

⑶臺體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=

⑷球體:①表面積:S=;②體積:V=

4、位置關系的證明(主要方法):注意立體幾何證明的書寫

(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

(2)平面與平面平行:①線面平行面面平行。

(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

5、求角:(步驟——Ⅰ。找或作角;Ⅱ。求角)

⑴異面直線所成角的求法:平移法:平移直線,構造三角形;

⑵直線與平面所成的角:直線與射影所成的角

四、導數(shù):導數(shù)的意義-導數(shù)公式-導數(shù)應用(極值最值問題、曲線切線問題)

1、導數(shù)的定義:在點處的導數(shù)記作。

2、導數(shù)的幾何物理意義:曲線在點處切線的斜率

①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。

3、常見函數(shù)的導數(shù)公式:①;②;③;

⑤;⑥;⑦;⑧。

4、導數(shù)的四則運算法則:

5、導數(shù)的應用:

(1)利用導數(shù)判斷函數(shù)的單調(diào)性:設函數(shù)在某個區(qū)間內(nèi)可導,如果,那么為增函數(shù);如果,那么為減函數(shù);

注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

(2)求極值的步驟:

①求導數(shù);

②求方程的根;

③列表:檢驗在方程根的左右的符號,如果左正右負,那么函數(shù)在這個根處取得極大值;如果左負右正,那么函數(shù)在這個根處取得極小值;

(3)求可導函數(shù)最大值與最小值的步驟:

ⅰ求的根;ⅱ把根與區(qū)間端點函數(shù)值比較,最大的為最大值,最小的是最小值。

五、常用邏輯用語:

1、四種命題:

⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p

注:1、原命題與逆否命題等價;逆命題與否命題等價。判斷命題真假時注意轉(zhuǎn)化。

2、注意命題的否定與否命題的區(qū)別:命題否定形式是;否命題是。命題“或”的否定是“且”;“且”的否定是“或”。

3、邏輯聯(lián)結詞:

⑴且(and):命題形式pq;pqpqpqp

⑵或(or):命題形式pq;真真真真假

⑶非(not):命題形式p。真假假真假

假真假真真

假假假假真

“或命題”的真假特點是“一真即真,要假全假”;

“且命題”的真假特點是“一假即假,要真全真”;

“非命題”的真假特點是“一真一假”

4、充要條件

由條件可推出結論,條件是結論成立的充分條件;由結論可推出條件,則條件是結論成立的必要條件。

5、全稱命題與特稱命題:

短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號表示。含有全體量詞的命題,叫做全稱命題。

短語“有一個”或“有些”或“至少有一個”在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,并用符號表示,含有存在量詞的命題,叫做存在性命題。

全稱命題p:;全稱命題p的否定p:。

特稱命題p:;特稱命題p的否定p:

高二數(shù)學知識點總結精選篇5

平面向量

戴氏航天學校老師總結加法與減法的代數(shù)運算:

(1)若a=(x1,y1 ),b=(x2,y2 )則a b=(x1+x2,y1+y2 ).

向量加法與減法的幾何表示:平行四邊形法則、三角形法則。

戴氏航天學校老師總結向量加法有如下規(guī)律:+= +(交換律); +( +c)=( + )+c (結合律);

兩個向量共線的充要條件:

(1) 向量b與非零向量共線的充要條件是有且僅有一個實數(shù),使得b= .

(2) 若=(),b=()則‖b .

平面向量基本定理:

若e1、e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量,戴氏航天學校老師提醒有且只 有一對實數(shù),,使得= e1+ e2

1972088