高一數(shù)學(xué)必修1函數(shù)與方程知識要點
高一數(shù)學(xué)必修1函數(shù)與方程知識要點
在高中數(shù)學(xué)函數(shù)教學(xué)中運用數(shù)學(xué)思想方法,有助于學(xué)生構(gòu)建完善的知識體系,提升學(xué)生的解決問題的能力。下面是學(xué)習(xí)啦小編給大家?guī)淼母咭粩?shù)學(xué)必修1函數(shù)與方程知識要點,希望對你有幫助。
高一數(shù)學(xué)函數(shù)與方程知識要點
函數(shù)的零點
(1)定義:
對于函數(shù)y=f(x)(x∈D),把使f(x)=0成立的實數(shù)x叫做函數(shù)y=f(x)(x∈D)的零點.
(2)函數(shù)的零點與相應(yīng)方程的根、函數(shù)的圖象與x軸交點間的關(guān)系:
方程f(x)=0有實數(shù)根⇔函數(shù)y=f(x)的圖象與x軸有交點⇔函數(shù)y=f(x)有零點.
(3)函數(shù)零點的判定(零點存在性定理):
如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在c∈(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根.
二二次函數(shù)y=ax2+bx+c(a>0)的圖象與零點的關(guān)系
三二分法
對于在區(qū)間[a,b]上連續(xù)不斷且f(a)·f(b)<0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進(jìn)而得到零點近似值的方法叫做二分法.
1、函數(shù)的零點不是點:
函數(shù)y=f(x)的零點就是方程f(x)=0的實數(shù)根,也就是函數(shù)y=f(x)的圖象與x軸交點的橫坐標(biāo),所以函數(shù)的零點是一個數(shù),而不是一個點.在寫函數(shù)零點時,所寫的一定是一個數(shù)字,而不是一個坐標(biāo).
2、對函數(shù)零點存在的判斷中,必須強(qiáng)調(diào):
(1)、f(x)在[a,b]上連續(xù);
(2)、f(a)·f(b)<0;
(3)、在(a,b)內(nèi)存在零點.
這是零點存在的一個充分條件,但不必要.
3、對于定義域內(nèi)連續(xù)不斷的函數(shù),其相鄰兩個零點之間的所有函數(shù)值保持同號.
利用函數(shù)零點的存在性定理判斷零點所在的區(qū)間時,首先看函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是否連續(xù)不斷,再看是否有f(a)·f(b)<0.若有,則函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)必有零點.
四判斷函數(shù)零點個數(shù)的常用方法
1、解方程法:
令f(x)=0,如果能求出解,則有幾個解就有幾個零點.
2、零點存在性定理法:
利用定理不僅要判斷函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、周期性、對稱性)才能確定函數(shù)有多少個零點.
3、數(shù)形結(jié)合法:
轉(zhuǎn)化為兩個函數(shù)的圖象的交點個數(shù)問題.先畫出兩個函數(shù)的圖象,看其交點的個數(shù),其中交點的個數(shù),就是函數(shù)零點的個數(shù).
已知函數(shù)有零點(方程有根)求參數(shù)取值常用的方法
1、直接法:
直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍.
2、分離參數(shù)法:
先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決.
3、數(shù)形結(jié)合法:
先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解.
高一數(shù)學(xué)必修1函數(shù)與方程知識要點相關(guān)文章:
1.高一數(shù)學(xué)必修1函數(shù)與方程知識點總結(jié)
2.高一數(shù)學(xué)必修一函數(shù)必背知識點整理
3.高一數(shù)學(xué)必修一函數(shù)知識點總結(jié)
4.高一數(shù)學(xué)必修1各章知識點總結(jié)