九年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試卷
九年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試卷
九年級(jí)的期末復(fù)習(xí)是數(shù)學(xué)學(xué)習(xí)的重要環(huán)節(jié),也是提高數(shù)學(xué)學(xué)習(xí)成效的重要因素。下面是學(xué)習(xí)啦小編為大家?guī)淼年P(guān)于九年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試卷,希望會(huì)給大家?guī)韼椭?/p>
九年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試卷:
一、選擇題(本題共10個(gè)小題,每小題3分,共30分)
1.汽車標(biāo)志中不是中心對(duì)稱形的是( )
【考點(diǎn)】中心對(duì)稱形.
【分析】根據(jù)中心對(duì)稱形的概念求解.
【解答】解:A、是中心對(duì)稱形.故錯(cuò)誤;
B、不是中心對(duì)稱形.故正確;
C、是中心對(duì)稱形.故錯(cuò)誤;
D、是中心對(duì)稱形.故錯(cuò)誤.
故選B.
【點(diǎn)評(píng)】本題考查了中心對(duì)稱形的概念:中心對(duì)稱形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后與原重合.
2.一元二次方程x2﹣8x﹣1=0配方后可變形為( )
A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15
【考點(diǎn)】解一元二次方程-配方法.
【專題】計(jì)算題.
【分析】方程利用配方法求出解即可.
【解答】解:方程變形得:x2﹣8x=1,
配方得:x2﹣8x+16=17,即(x﹣4)2=17,
故選C
【點(diǎn)評(píng)】此題考查了解一元二次方程﹣配方法,熟練掌握完全平方公式是解本題的關(guān)鍵.
3.下列說法正確的是( )
A.“打開電視任選一頻道,播放動(dòng)畫片”是必然事件
B.“任意畫出一個(gè)正六邊形,它的中心角是60°”是必然事件
C.“旋轉(zhuǎn)前、后的形全等”是隨機(jī)事件
D.任意擲一枚質(zhì)地均勻的硬幣10次正面朝上的一定是5次
【考點(diǎn)】隨機(jī)事件.
【分析】根據(jù)隨機(jī)事件以及必然事件的定義即可作出判斷.
【解答】解:A、“打開電視任選一頻道,播放動(dòng)畫片”是隨機(jī)事件,選項(xiàng)錯(cuò)誤;
B、“任意畫出一個(gè)正六邊形,它的中心角是60°”是必然事件,選項(xiàng)正確;
C、“旋轉(zhuǎn)前、后的形全等”是必然事件,選項(xiàng)錯(cuò)誤;
D、任意擲一枚質(zhì)地均勻的硬幣10次正面朝上的可能是5次,選項(xiàng)錯(cuò)誤.
故選B.
【點(diǎn)評(píng)】本題考查了必然事件、隨機(jī)事件、不可能事件的定義,解決本題需要正確理解必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.
4.市煤氣公司計(jì)劃在地下修建一個(gè)容積為104m3的圓柱形煤氣儲(chǔ)存室,則儲(chǔ)存室的底面積S(單位:m2)與其深度d(單位:m)的函數(shù)象大致是( )
A. B. C. D.
【考點(diǎn)】反比例函數(shù)的應(yīng)用;反比例函數(shù)的象.
【專題】壓軸題.
【分析】根據(jù)儲(chǔ)存室的體積=底面積×高即可列出反比例函數(shù)關(guān)系,從而判定正確的結(jié)論.
【解答】解:由儲(chǔ)存室的體積公式知:104=Sd,
故儲(chǔ)存室的底面積S(m2)與其深度d(m)之間的函數(shù)關(guān)系式為S= (d>0)為反比例函數(shù).
故選:A.
【點(diǎn)評(píng)】本題考查了反比例函數(shù)的應(yīng)用及反比例函數(shù)的象,解題的關(guān)鍵是根據(jù)自變量的取值范圍確定雙曲線的具體位置,難度不大.
5.已知PA、PB是⊙O的切線,A、B為切點(diǎn),AC是⊙O的直徑,∠P=40°,則∠BAC的度數(shù)是( )
A.10° B.20° C.30° D.40°
【考點(diǎn)】切線的性質(zhì);圓周角定理.
【專題】壓軸題.
【分析】連接BC,OB,根據(jù)圓周角定理先求出∠C,再求∠BAC.
【解答】解:連接BC,OB,
AC是直徑,則∠ABC=90°,
PA、PB是⊙O的切線,A、B為切點(diǎn),則∠OAP=∠OBP=90°,
∴∠AOB=180°﹣∠P=140°,
由圓周角定理知,∠C= ∠AOB=70°,
∴∠BAC=90°﹣∠C=20°.
故選B.
【點(diǎn)評(píng)】本題利用了直徑對(duì)的圓周角是直角,切線的概念,圓周角定理,四邊形內(nèi)角和定理求解.
6.點(diǎn)A為∠α邊上的任意一點(diǎn),作AC⊥BC于點(diǎn)C,CD⊥AB于點(diǎn)D,下列用線段比表示cosα的值,錯(cuò)誤的是( )
A. B. C. D.
【考點(diǎn)】銳角三角函數(shù)的定義.
【分析】利用垂直的定義以及互余的定義得出∠α=∠ACD,進(jìn)而利用銳角三角函數(shù)關(guān)系得出答案.
【解答】解:∵AC⊥BC,CD⊥AB,
∴∠α+∠BCD=∠ACD+∠BCD,
∴∠α=∠ACD,
∴cosα=cos∠ACD= = = ,
只有選項(xiàng)C錯(cuò)誤,符合題意.
故選:C.
【點(diǎn)評(píng)】此題主要考查了銳角三角函數(shù)的定義,得出∠α=∠ACD是解題關(guān)鍵.
7.A,B兩地被池塘隔開,小明通過下列方法測(cè)出了A,B間的距離:先在AB外選一點(diǎn)C,然后測(cè)出AC,BC的中點(diǎn)M,N,并測(cè)量出MN的長為12m,由此他就知道了A,B間的距離,有關(guān)他這次探究活動(dòng)的描述錯(cuò)誤的是( )
A.MN∥AB
B.AB=24m
C.△CMN∽△CAB
D.△CMN與四邊形ABMN的面積之比為1:2
【考點(diǎn)】三角形中位線定理.
【分析】根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得MN∥AB,MN= AB,再根據(jù)相似三角形的判定解答即可.
【解答】解:∵M(jìn)、N分別是AC,BC的中點(diǎn),
∴MN∥AB,MN= AB,
∴AB=2MN=2×12=24m,△CMN∽△CAB,
∵M(jìn)是AC的中點(diǎn),
∴CM=MA,
∴CM:CA=1:2,
∴△CMN與△ACB的面積之比為1:4,
即△CMN與四邊形ABMN的面積之比為1:3,
故描述錯(cuò)誤的是D選項(xiàng).
故選:D.
【點(diǎn)評(píng)】本題考查了三角形的中位線平行于第三邊并且等于第三邊的一半,相似三角形的判定,熟記定理并準(zhǔn)確識(shí)是解題的關(guān)鍵.
8.教師節(jié)期間,某校數(shù)學(xué)組教師向本組其他教師各發(fā)一條祝福短信.據(jù)統(tǒng)計(jì),全組共發(fā)了240條祝福短信,如果設(shè)全組共有x名教師,依題意,可列出的方程是( )
A.x(x+1)=240 B.x(x﹣1)=240 C.2x(x+1)=240 D. x(x+1)=240
【考點(diǎn)】由實(shí)際問題抽象出一元二次方程.
【專題】應(yīng)用題.
【分析】每個(gè)老師都要向除自己之外的老師發(fā)一條短信,讓人數(shù)乘以每個(gè)老師所發(fā)短信條數(shù)等于短信總條數(shù)即為所求方程.
【解答】解:∵全組共有x名教師,每個(gè)老師都要發(fā)(x﹣1)條短信,共發(fā)了240條短信.
∴x(x﹣1)=240.
故選B.
【點(diǎn)評(píng)】考查列一元二次方程;得到短信總條數(shù)的等量關(guān)系是解決本題的關(guān)鍵.
9.已知兩點(diǎn)A(5,6),B(7,2),先將線段AB向左平移一個(gè)單位,再以原點(diǎn)O為位似中心,將其縮小為原來的 得到線段CD,則點(diǎn)A的對(duì)應(yīng)點(diǎn)C的坐標(biāo)為( )
A.(2,3) B.(﹣2,﹣3) C.(2,3)或(﹣2,﹣3) D.(3,3)或(﹣3,﹣3)
【考點(diǎn)】位似變換;坐標(biāo)與形性質(zhì).
【分析】首先得出A點(diǎn)平移后點(diǎn)的坐標(biāo),再利用位似形的性質(zhì)得出對(duì)應(yīng)點(diǎn)C的坐標(biāo).
【解答】解:所示:可得A點(diǎn)平移后對(duì)應(yīng)點(diǎn)A′坐標(biāo)為:(4,6),
則點(diǎn)A′的對(duì)應(yīng)點(diǎn)C的坐標(biāo)為:(2,3)或(﹣2,﹣3).
【點(diǎn)評(píng)】此題主要考查了位似變換,根據(jù)題意得出對(duì)應(yīng)點(diǎn)坐標(biāo)是解題關(guān)鍵.
10.已知二次函數(shù)y=ax2+bx+c+2的象所示,頂點(diǎn)為(﹣1,0),下列結(jié)論:①abc>0;②b2﹣4ac=0;③a>2;④方程ax2+bc+c=﹣2的根為x1=x2=﹣1;⑤若點(diǎn)B(﹣ ,y1),C(﹣ ,y2)為函數(shù)象上的兩點(diǎn),則y2
A.2 B.3 C.4 D.5
【考點(diǎn)】二次函數(shù)象與系數(shù)的關(guān)系.
【分析】①首先根據(jù)拋物線開口向上,可得a>0;然后根據(jù)對(duì)稱軸在y軸左邊,可得b>0;最后根據(jù)拋物線與y軸的交點(diǎn)在x軸的上方,可得c>0,據(jù)此判斷出abc>0即可.
?、诟鶕?jù)二次函數(shù)y=ax2+bx+c+2的象與x軸只有一個(gè)交點(diǎn),可得△=0,即b2﹣4a(c+2)=0,b2﹣4ac=8a>0,據(jù)此解答即可.
?、凼紫雀鶕?jù)對(duì)稱軸x=﹣ =﹣1,可得b=2a,然后根據(jù)b2﹣4ac=8a,確定出a的取值范圍即可.
④根據(jù)頂點(diǎn)為(﹣1,0),可得方程ax2+bc+c=﹣2的有兩個(gè)相等實(shí)根,
?、莞鶕?jù)點(diǎn)BC在對(duì)稱軸右側(cè),y隨x的增大而增大來判斷即可.
【解答】解:∵拋物線開口向上,
∴a>0,
∵對(duì)稱軸在y軸左邊,
∴b>0,
∵拋物線與y軸的交點(diǎn)在x軸的上方,
∴c+2>2,
∴c>0,
∴abc>0,
∴結(jié)論①正確;
∵二次函數(shù)y=ax2+bx+c+2的象與x軸只有一個(gè)交點(diǎn),
∴△=0,
即b2﹣4a(c+2)=0,
∴b2﹣4ac=8a>0,
∴結(jié)論②不正確;
∵對(duì)稱軸x=﹣ =﹣1,
∴b=2a,
∵b2﹣4ac=8a,
∴4a2﹣4ac=8a,
∴a=c+2,
∵c>0,
∴a>2,
∴結(jié)論③正確;
∵二次函數(shù)y=ax2+bx+c+2的頂點(diǎn)為(﹣1,0),
∴方程ax2+bx+c+2=0的根為x1=x2=﹣1;
∴結(jié)論④正確;
∵x>﹣1,y隨x的增大而增大,
∴y1>y2,
∴結(jié)論⑤正確.
綜上,可得正確結(jié)論的個(gè)數(shù)是2個(gè):①③④⑤.
故選C.
【點(diǎn)評(píng)】本題考查了二次函數(shù)的象與系數(shù)的關(guān)系,要熟練掌握,解答此題的關(guān)鍵是要明確:①二次項(xiàng)系數(shù)a決定拋物線的開口方向和大?。寒?dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口;②一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置:當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左; 當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右.(簡稱:左同右異)③常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn). 拋物線與y軸交于(0,c).
二、填空題(本題有6小題,每小題3分,共18分)
11.若關(guān)于x的一元二次方程kx2+2x+1=0有兩個(gè)實(shí)數(shù)根,則k的取值范圍是 k≤1且k≠0 .
【考點(diǎn)】根的判別式;一元二次方程的定義.
【分析】若一元二次方程有兩不等實(shí)數(shù)根,則根的判別式△=b2﹣4ac≥0,建立關(guān)于k的不等式,求出k的取值范圍.還要注意二次項(xiàng)系數(shù)不為0.
【解答】解:∵關(guān)于x的一元二次方程kx2+2x+1=0有兩個(gè)實(shí)數(shù)根,
∴根的判別式△=b2﹣4ac=4﹣4k≥0,且k≠0.
即k≤1且k≠0.
故答案是:k≤1且k≠0.
【點(diǎn)評(píng)】本題考查了一元二次方程根的判別式的應(yīng)用.切記不要忽略一元二次方程二次項(xiàng)系數(shù)不為零這一隱含條件.
12.在一個(gè)不透明的袋子中有10個(gè)除顏色外均相同的小球,通過多次摸球試驗(yàn)后,發(fā)現(xiàn)摸到白球的概率約為30%,估計(jì)袋中白球有 3 個(gè).
【考點(diǎn)】利用頻率估計(jì)概率.
【分析】根據(jù)摸到白球的概率公式 =40%,列出方程求解即可.
【解答】解:不透明的布袋中的小球除顏色不同外,其余均相同,共有10個(gè)小球,其中白色小球x個(gè),
根據(jù)古典型概率公式知:P(白色小球)= =30%,
解得:x=3.
故答案為:3.
【點(diǎn)評(píng)】此題主要考查了概率公式的應(yīng)用,一般方法為:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)= .
13.水平放置的圓柱形排水管道的截面直徑是1m,其中水面的寬AB為0.8m,則排水管內(nèi)水的深度為 0.8 m.
【考點(diǎn)】垂徑定理的應(yīng)用;勾股定理.
【分析】過O點(diǎn)作OC⊥AB,C為垂足,交⊙O于D,連OA,根據(jù)垂徑定理得到AC=BC=0.5m,再在Rt△AOC中,利用勾股定理可求出OC,即可得到CD的值,即水的深度.
【解答】解:過O點(diǎn)作OC⊥AB,C為垂足,交⊙O于D、E,連OA,
OA=0.5m,AB=0.8m,
∵OC⊥AB,
∴AC=BC=0.4m,
在Rt△AOC中,OA2=AC2+OC2,
∴OC=0.3m,
則CE=0.3+0.5=0.8m,
故答案為:0.8.
【點(diǎn)評(píng)】本題考查了垂徑定理的應(yīng)用,掌握垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對(duì)的弧是解題的關(guān)鍵,注意勾股定理的運(yùn)用.
14.在平面直角坐標(biāo)系中,將拋物線y=x2﹣4先向右平移2個(gè)單位,再向上平移3個(gè)單位,得到的拋物線解析式為 y=(x﹣2)2﹣1 .
【考點(diǎn)】二次函數(shù)象與幾何變換.
【分析】先確定拋物線y=x2﹣4的頂點(diǎn)坐標(biāo)為(0,﹣4),再根據(jù)點(diǎn)平移的規(guī)律點(diǎn)(0,﹣4)平移后得到點(diǎn)的坐標(biāo)為(2,﹣1),然后根據(jù)頂點(diǎn)式寫出平移后拋物線的解析式.
【解答】解:拋物線y=x2﹣4的頂點(diǎn)坐標(biāo)為(0,﹣4),把點(diǎn)(0,﹣4)先向右平移2個(gè)單位,再向上平移3個(gè)單位得到點(diǎn)的坐標(biāo)為(2,﹣1),所以平移后的拋物線解析式為y=(x﹣2)2﹣1.
故答案為y=(x﹣2)2﹣1.
【點(diǎn)評(píng)】本題考查了二次函數(shù)象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點(diǎn)平移后的坐標(biāo),利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點(diǎn)坐標(biāo),即可求出解析式.
15.用一個(gè)圓心角為120°,半徑為4的扇形作一個(gè)圓錐的側(cè)面,這個(gè)圓錐的底面圓的半徑為 .
【考點(diǎn)】弧長的計(jì)算.
【分析】利用底面周長=展開的弧長可得.
【解答】解: ,解得r= .
故答案為: .
【點(diǎn)評(píng)】解答本題的關(guān)鍵是有確定底面周長=展開的弧長這個(gè)等量關(guān)系,然后由扇形的弧長公式和圓的周長公式求值.
16.四邊形OABC是矩形,ADEF是正方形,點(diǎn)A,D在x軸的正半軸,點(diǎn)C在y軸的正半軸上,點(diǎn)F再AB上,點(diǎn)B,E在反比例函數(shù)y= 的象上,OA=2,OC=6,則正方形ADEF的邊長為 ﹣1 .
【考點(diǎn)】反比例函數(shù)象上點(diǎn)的坐標(biāo)特征.
【分析】先確定B點(diǎn)坐標(biāo)(2,6),根據(jù)反比例函數(shù)象上點(diǎn)的坐標(biāo)特征得到k=12,則反比例函數(shù)解析式為y= ,設(shè)AD=t,則OD=2+t,所以E點(diǎn)坐標(biāo)為(2+t,t),再根據(jù)反比例函數(shù)象上點(diǎn)的坐標(biāo)特征得(2+t)•t=12,利用因式分解法可求出t的值.
【解答】解:∵OA=2,OC=6,
∴B點(diǎn)坐標(biāo)為(2,6),
∴k=2×6=12,
∴反比例函數(shù)解析式為y= ,
設(shè)AD=t,則OD=2+t,
∴E點(diǎn)坐標(biāo)為(2+t,t),
∴(2+t)•t=12,
整理為t2+2t﹣12=0,
解得t1=﹣1+ (舍去),t2=﹣1﹣ ,
∴正方形ADEF的邊長為 ﹣1.
故答案為: ﹣1.
【點(diǎn)評(píng)】本題考查了反比例函數(shù)象上點(diǎn)的坐標(biāo)特征:反比例函數(shù)y= (k為常數(shù),k≠0)的象是雙曲線,象上的點(diǎn)(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.
三、解答題(共9小題,滿分72分)
17.(1)解方程:2x2+x﹣15=0
(2)計(jì)算:sin30°﹣ sin45°+tan60°﹣cos30°+20160.
【考點(diǎn)】解一元二次方程-因式分解法;特殊角的三角函數(shù)值.
【分析】(1)先分解因式,即可得出兩個(gè)一元一次方程,求出方程的解即可;
(2)先把各個(gè)角的函數(shù)值代入,再求出即可.
【解答】解:(1)2x2+x﹣15=0,
(2x﹣5)(x+3)=0,
2x﹣5=0,x+3=0,
x1= ,x2=﹣3;
(2)原式= ﹣ × + ﹣ +1
= .
【點(diǎn)評(píng)】本題考查了解一元二次方程和特殊角的三角函數(shù)值的應(yīng)用,能熟記解一元二次方程的解題思路和熟記特殊角的三角函數(shù)值是解此題的關(guān)鍵.
18.△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(2,4),B (1,1),C(4,3).
(1)請(qǐng)畫出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后的△A1BC1;
(2)求出(1)中點(diǎn)C旋轉(zhuǎn)到C1所經(jīng)過的路徑長(結(jié)果保留π)
【考點(diǎn)】作-旋轉(zhuǎn)變換;弧長的計(jì)算.
【專題】計(jì)算題;作題.
【分析】(1)利用網(wǎng)格特點(diǎn)和旋轉(zhuǎn)的性質(zhì)畫出點(diǎn)A、C的對(duì)應(yīng)點(diǎn)A1、C1即可得到△A1BC1;
(2)由于點(diǎn)C旋轉(zhuǎn)到C1所經(jīng)過的路徑為以B為圓心,BC為半徑,圓心角為90度的弧,所以利用弧長公式可計(jì)算出點(diǎn)C旋轉(zhuǎn)到C1所經(jīng)過的路徑長.
【解答】解:(1)△A1BC1為所作;
(2)BC= = ,
所以點(diǎn)C旋轉(zhuǎn)到C1所經(jīng)過的路徑長= = π.
【點(diǎn)評(píng)】本題考查了作﹣旋轉(zhuǎn)變換:根據(jù)旋轉(zhuǎn)的性質(zhì)可知,對(duì)應(yīng)角都相等都等于旋轉(zhuǎn)角,對(duì)應(yīng)線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對(duì)應(yīng)點(diǎn),順次連接得出旋轉(zhuǎn)后的形.
19.在“陽光體育”活動(dòng)時(shí)間,九年級(jí)A,B,C,D四位同學(xué)進(jìn)行一次羽毛球單打比賽,要從中選出兩位同學(xué)打一場(chǎng)比賽,用畫樹狀或列表的方法,求恰好選中A,C兩位同學(xué)進(jìn)行比賽的概率.
【考點(diǎn)】列表法與樹狀法.
【專題】計(jì)算題.
【分析】先畫樹狀展示所有12種等可能的結(jié)果數(shù),再找出選中A,C兩位同學(xué)進(jìn)行比賽的結(jié)果數(shù),然后根據(jù)概率公式求解.
【解答】解:畫樹狀為:
共有12種等可能的結(jié)果數(shù),其中選中A,C兩位同學(xué)進(jìn)行比賽的結(jié)果數(shù)為2,
所以選中A,C兩位同學(xué)進(jìn)行比賽的概率= = .
【點(diǎn)評(píng)】本題考查了列表法與樹狀法:利用列表法和樹狀法展示所有可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,求出概率.
20.小明坐于堤邊垂釣,河堤AC的坡角為30°,AC長2 ,釣竿AO的傾斜角∠ODC是60°,其長OA為5米,若AO與釣魚線OB的夾角為60°,求浮漂B與河堤下端C之間的距離.
【考點(diǎn)】解直角三角形的應(yīng)用-坡度坡角問題.
【分析】先根據(jù)三角形內(nèi)角和定理求出∠CAD=180°﹣∠ODB﹣∠ACD=90°,解Rt△ACD,得出AD=AC•tan∠ACD=2米,CD=2AD=3米,再證明△BOD是等邊三角形,得到BD=OD=OA+AD=7米,然后根據(jù)BC=BD﹣CD即可求出浮漂B與河堤下端C之間的距離.
【解答】解:∵AO的傾斜角是60°,
∴∠ODB=60°.
∵∠ACD=30°,
∴∠CAD=180°﹣∠ODB﹣∠ACD=90°.
在Rt△ACD中,AD=AC•tan∠ACD=2 × =2(米),
∴CD=2AD=4米,
又∵∠O=60°,
∴△BOD是等邊三角形,
∴BD=OD=OA+AD=2+5=7(米),
∴BC=BD﹣CD=7﹣4=3(米).
答:浮漂B與河堤下端C之間的距離為3米.
【點(diǎn)評(píng)】本題考查了解直角三角形的應(yīng)用,解答本題的關(guān)鍵是根據(jù)所給的傾斜角構(gòu)造直角三角形,利用三角函數(shù)的知識(shí)求解.
21.在平面直角坐標(biāo)系xOy中,一次函數(shù)y=3x+1的象與y軸交于點(diǎn)A,與反比例函數(shù)y= 在第一象限內(nèi)的象交于點(diǎn)B,且點(diǎn)B的橫坐標(biāo)為1,過點(diǎn)A作AC⊥y軸交反比例函數(shù)y= (k≠0)的象于點(diǎn)C,連接BC.
(1)求反比例函數(shù)的表達(dá)式及△ABC的面積;
(2)直接寫出當(dāng)x<1時(shí),y= (k≠0)中y的取值范圍.
【考點(diǎn)】反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.
【分析】(1)先由一次函數(shù)y=3x+1的象過點(diǎn)B,且點(diǎn)B的橫坐標(biāo)為1,將x=1代入y=3x+1,求出y的值,得到點(diǎn)B的坐標(biāo),再將B點(diǎn)坐標(biāo)代入y= ,利用待定系數(shù)法即可求出反比例函數(shù)的表達(dá)式;根據(jù)一次函數(shù)y=3x+1的象與y軸交于點(diǎn)A,求出點(diǎn)A的坐標(biāo)為(0,1),再將y=1代入y= ,求出x的值,那么AC=4.過B作BD⊥AC于D,則BD=yB﹣yC=4﹣1=3,然后根據(jù)S△ABC= AC•BD,將數(shù)值代入計(jì)算即可求解;
(2)根據(jù)x<1時(shí),得到 ,于是得到y(tǒng)的取值范圍.
【解答】解:(1)∵一次函數(shù)y=3x+1的象過點(diǎn)B,且點(diǎn)B的橫坐標(biāo)為1,
∴y=3×1+1=4,
∴點(diǎn)B的坐標(biāo)為(1,4).
∵點(diǎn)B在反比例函數(shù)y= 的象上,
∴k=1×4=4,
∴反比例函數(shù)的表達(dá)式為y= ,
∵一次函數(shù)y=3x+1的象與y軸交于點(diǎn)A,
∴當(dāng)x=0時(shí),y=1,
∴點(diǎn)A的坐標(biāo)為(0,1),
∵AC⊥y軸,
∴點(diǎn)C的縱坐標(biāo)與點(diǎn)A的縱坐標(biāo)相同,是1,
∵點(diǎn)C在反比例函數(shù)y= 的象上,
∴當(dāng)y=1時(shí),1= ,解得x=4,
∴AC=4.
過B作BD⊥AC于D,則BD=yB﹣yC=4﹣1=3,
∴S△ABC= AC•BD= ×4×3=6;
(2)由形得:∵當(dāng)0
∴y>4,
當(dāng)x<0時(shí),y<0.
【點(diǎn)評(píng)】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,待定系數(shù)法求反比例函數(shù)的解析式,反比例函數(shù)象上點(diǎn)的坐標(biāo)特征,平行于y軸的直線上點(diǎn)的坐標(biāo)特征,三角形的面積,難度適中.求出反比例函數(shù)的解析式是解題的關(guān)鍵.
22.在Rt△ABC中,∠C=90°,點(diǎn)O在AB上,以O(shè)為圓心,OA長為半徑的圓與AC、AB,分別交于點(diǎn)D、E,且∠CBD=∠A;
(1)判斷直線BD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若AD:AO=6:5,BC=2,求BD的長.
【考點(diǎn)】直線與圓的位置關(guān)系;直角三角形的性質(zhì);相似三角形的判定與性質(zhì).
【分析】(1)結(jié)論:BD是圓的切線,已知此線過圓O上點(diǎn)D,連接圓心O和點(diǎn)D(即為半徑),再證垂直即可;
(2)通過作輔助線,根據(jù)已知條件求出∠CBD的度數(shù),在Rt△BCD中求解即可.
【解答】解:(1)直線BD與⊙O相切.
證明:連接OD.
∵OA=OD
∴∠A=∠ADO
∵∠C=90°,
∴∠CBD+∠CDB=90°
又∵∠CBD=∠A
∴∠ADO+∠CDB=90°
∴∠ODB=90°
∴直線BD與⊙O相切.
(2)解法一:連接DE.
∵AE是⊙O的直徑,∴∠ADE=90°
∵AD:AO=6:5
∴cosA=AD:AE=3:5
∵∠C=90°,∠CBD=∠A
cos∠CBD=BC:BD=3:5
∵BC=2,BD= ;
解法二:過點(diǎn)O作OH⊥AD于點(diǎn)H.
∴AH=DH= AD
∵AD:AO=6:5
∴cosA=AH:AO=3:5
∵∠C=90°,∠CBD=∠A
∴cos∠CBD=BC:BD=3:5,
∵BC=2,
∴BD= .
【點(diǎn)評(píng)】本題考查了直線和圓的位置關(guān)系、直角三角形的性質(zhì)以及相似三角形的判定和性質(zhì).
23.神農(nóng)嘗百草,泡泡青菜便是其中之一,小隨同學(xué)利用假期開網(wǎng)店批發(fā)出售泡泡青菜,他打出促銷廣告:最優(yōu)質(zhì)泡泡青菜35箱,每箱售價(jià)30元,若一次性購買不超過10箱時(shí),售價(jià)不變;若一次性購買超過10箱時(shí),沒多買1箱,所買的每箱泡泡青菜的售價(jià)均降低0.3元.已知該青菜成本是每箱20元,若不計(jì)其他費(fèi)用,設(shè)顧客一次性購買泡泡青菜x(x為整數(shù))箱時(shí),該網(wǎng)店從中獲利y元.
(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)顧客一次性購買多少箱時(shí),該網(wǎng)店從中獲利最多,最多是多少?
【考點(diǎn)】二次函數(shù)的應(yīng)用.
【分析】(1)根據(jù)題意可得出銷量乘以每臺(tái)利潤進(jìn)而得出總利潤,進(jìn)而得出答案;
(2)根據(jù)銷量乘以每臺(tái)利潤進(jìn)而得出總利潤,即可求出即可.
【解答】解:(1)y= ,
(2)在0≤x≤10時(shí),y=10x,當(dāng)x=10時(shí),y有最大值100;
在10
當(dāng)x=21 時(shí),y取得最大值,
∵x為整數(shù),根據(jù)拋物線的對(duì)稱性得x=22時(shí),y有最大值140.8.
∵140.8>100,
∴顧客一次購買22箱時(shí),該網(wǎng)站從中獲利最多,最多是140.8元.
【點(diǎn)評(píng)】此題主要考查了二次函數(shù)的應(yīng)用,根據(jù)題意得出y與x的函數(shù)關(guān)系是解題關(guān)鍵.
24.E是四邊形ABCD的邊AB上一點(diǎn).
(1)猜想論證:,分別連接DE、CE,若∠A=∠B=∠DEC=65°,試猜想中哪兩個(gè)三角形相似,并說明理由.
(2)觀察作:‚,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個(gè)小正方形的邊長為1)的格點(diǎn)(即每個(gè)小正方形的頂點(diǎn))上,試在‚中矩形ABCD的邊AB上畫出所有滿足條件的點(diǎn)E(點(diǎn)E與點(diǎn)A,B 不重合),分別連結(jié)ED,EC,使四邊形ABCD被分成的三個(gè)三角形相似(不證明).
(3)拓展探究:ƒ,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處,若點(diǎn)E恰好將四邊形ABCM分成的三個(gè)三角形相似,請(qǐng)直接寫出 的值.
【考點(diǎn)】相似形綜合題.
【專題】綜合題;形的相似.
【分析】(1)△ADE∽△BEC,理由為:利用三角形內(nèi)角和定理及鄰補(bǔ)角定義得到一對(duì)角相等,再由已知角相等,利用兩角相等的三角形相似即可得證;
(2)②a與②b所示,點(diǎn)E為所求的點(diǎn);
(3)由點(diǎn)E恰好將四邊形ABCM分成的三個(gè)三角形相似,利用相似三角形對(duì)應(yīng)角相等得到三個(gè)角相等,再由折疊的性質(zhì)得到∠DCM=∠MCE=∠BCE=30°,EC=CD=AB,在Rt△BCE中,利用銳角三角函數(shù)定義求出所求式子比值即可.
【解答】解:(1)△ADE∽△BEC,理由為:
∵∠A=65°,
∴∠ADE+∠DEA=115°,
∵∠DEC=65°,
∴∠BEC+∠DEA=115°,
∴∠ADE=∠BEC,
∵∠A=∠B,
∴△ADE∽△BEC;
(2)作如下:
(3)∵點(diǎn)E恰好將四邊形ABCM分成的三個(gè)三角形相似,
∴△AEM∽△BCE∽△ECM,
∴∠BCE=∠ECM=∠AEM,
由折疊可知:△ECM≌△DCM,
∴∠ECM=∠DCM,CE=CD,
∴∠BCE=∠ECM=∠DCM=30°,
∴DC=CE=AB,
在Rt△BCE中,cos∠BCE= =cos30°,
【點(diǎn)評(píng)】此題屬于相似型綜合題,涉及的知識(shí)有:相似三角形的判定與性質(zhì),銳角三角函數(shù)定義,以及折疊的性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解本題的關(guān)鍵.
25.已知拋物線y=ax2+bx+c經(jīng)過A (1,0)、B(0,3)及C(3,0)點(diǎn),動(dòng)點(diǎn)D從原點(diǎn)O開始沿OB方向以每秒1個(gè)單位長度移動(dòng),動(dòng)點(diǎn)E從點(diǎn)C開始沿CO方向以每秒1個(gè)長度單位移動(dòng),動(dòng)點(diǎn)D、E同時(shí)出發(fā),當(dāng)動(dòng)點(diǎn)E到達(dá)原點(diǎn)O時(shí),點(diǎn)D、E停止運(yùn)動(dòng).
(1)求拋物線的解析式及頂點(diǎn)P的坐標(biāo);
(2)若F(﹣1,0),求△DEF的面積S與E點(diǎn)運(yùn)動(dòng)時(shí)間t的函數(shù)解析式;當(dāng)t為何值時(shí),△DEF的面積最大?最大面積是多少?
(3)當(dāng)△DEF的面積最大時(shí),拋物線的對(duì)稱軸上是否存在一點(diǎn)N,使△EBN是直角三角形?若存在,求出N點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.
【考點(diǎn)】二次函數(shù)綜合題.
【分析】(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式,根據(jù)配方法,可得頂點(diǎn)坐標(biāo);
(2)根據(jù)三角形的面積公式,可得函數(shù)解析式,根據(jù)二次函數(shù)的性質(zhì),可得答案;
(3)根據(jù)勾股定理的逆定理,可得關(guān)于a的方程,根據(jù)解方程,可得N點(diǎn)坐標(biāo).
【解答】解:(1)將A (1,0)、B(0,3)及C(3,0)代入函數(shù)解析式,得
解得 ,
拋物線的解析式為y=x2﹣4x+3,
配方,得y=(x﹣2)2﹣1,頂點(diǎn)P的坐標(biāo)為(2,﹣1);
(2)1 ,
由題意,得
CE=t,OE=3﹣t,F(xiàn)E=4﹣t,OD=t.
S= FE•OD= (4﹣t)t=﹣ t2+2t=﹣ (t﹣2)2+2,
當(dāng)t=2時(shí),S最大=2;
(3)當(dāng)△DEF的面積最大時(shí),E(1,0),設(shè)N(2,a),
BN2=4+(a﹣3)2,EN2=1+a2,BE2=1+9=10,
①當(dāng)BN2+EN2=BE2時(shí),4+9﹣6a+a2+a2+1=10,化簡,得
a2﹣3a+2=0,解得a=2,a=1,N(2,2),N(2,1);
?、诋?dāng)BN2+BE2=EN2時(shí),4+9﹣6a+a2+10=1+a2,化簡,得
6a=22,解得a= ,N(2, );
?、郛?dāng)BE2+EN2=BN2時(shí),1+a2+10=4+9﹣6a+a2,
化簡,得
6a=2,解得a= ,N(2, ),
綜上所述:N點(diǎn)的坐標(biāo)(2,2),(2,1),(2, ),(2, ).
【點(diǎn)評(píng)】本題考查了二次函數(shù)綜合題,利用待定系數(shù)求函數(shù)解析式;利用二次函數(shù)的性質(zhì)求面積的最大值;利用勾股定理的逆定理得出關(guān)于a的方程是解題關(guān)鍵,要分類討論,以防遺漏.
看過九年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試卷的還看了:
1.九年級(jí)上冊(cè)數(shù)學(xué)試卷及答案
2.九年級(jí)上冊(cè)數(shù)學(xué)期末復(fù)習(xí)題
3.九年級(jí)數(shù)學(xué)上冊(cè)12月月考試卷