特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初三學(xué)習(xí)方法 > 九年級數(shù)學(xué) > 九年級上冊數(shù)學(xué)期末測試卷及答案(2)

九年級上冊數(shù)學(xué)期末測試卷及答案(2)

時(shí)間: 妙純901 分享

九年級上冊數(shù)學(xué)期末測試卷及答案

  九年級上冊數(shù)學(xué)期末測試卷參考答案

  一、選擇題(本題共10小題,每小題3分,共30分)

  1.下列各式中,正確的是(  )

  A. =﹣3 B.(﹣ )2=9 C.± =±3 D. =﹣2

  【考點(diǎn)】立方根;平方根;算術(shù)平方根.

  【分析】根據(jù)開方運(yùn)算,可得立方根,平方根.

  【解答】解:A、 = ,故A錯(cuò)誤;

  B、(﹣ )2=3,故B錯(cuò)誤;

  C、 =±3,故C正確;

  D、 =2,故D錯(cuò)誤;

  故選:C.

  【點(diǎn)評】本題考查了立方根,開方運(yùn)算是解題關(guān)鍵,注意算術(shù)平方根都是非負(fù)數(shù).

  2.方程(x﹣1)(x+3)=12化為ax2+bx+c=0的形式后,a、b、c的值為(  )

  A.1、2、﹣15 B.1、﹣2、﹣15 C.﹣1、﹣2、﹣15 D.﹣1、2、﹣15

  【考點(diǎn)】一元二次方程的一般形式.

  【分析】要確定方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng),首先要把方程化成一元二次方程的一般形式.

  【解答】解:∵原方程化成成一元二次方程的一般形式為x2+2x﹣15=0,

  ∴a=1,b=2,c=﹣15.

  故選A.

  【點(diǎn)評】本題比較簡單,解答此類題目時(shí)要先將方程化為ax2+bx+c=0的形式,再確定a、b、c的值.

  3.已知﹣1是關(guān)于x的方程x2+4x﹣m=0的一個(gè)根,則這個(gè)方程的另一個(gè)根是(  )

  A.﹣3 B.﹣2 C.﹣1 D.3

  【考點(diǎn)】根與系數(shù)的關(guān)系.

  【分析】設(shè)x2+4x﹣m=0的另一個(gè)根為x1,根據(jù)根與系數(shù)的關(guān)系得出﹣1+x1=﹣4,求出x1的值即可.

  【解答】解:設(shè)方程x2+4x﹣m=0的另一個(gè)根為:x1,

  由根與系數(shù)的關(guān)系得:﹣1+x1=﹣4,

  解得:x1=﹣3,

  故選:A.

  【點(diǎn)評】此題是一元二次方程根與系數(shù)之間關(guān)系的綜合應(yīng)用,關(guān)鍵是能關(guān)鍵根與系數(shù)的關(guān)系得出﹣1+x1=﹣4.

  4.如圖,在△ABC中,∠C=90°,∠B=60°,D是AC上一點(diǎn),DE⊥AB于E,且CD=2,DE=1,則BC的長為(  )

  A.2 B. C.2 D.4

  【考點(diǎn)】解直角三角形.

  【專題】壓軸題.

  【分析】由已知可求∠A=30°,AC=4,即求BC=AC•tanA=4× = .

  【解答】解:∵在△ABC中,∠C=90°,∠B=60°

  ∴∠A=30°

  ∵CD=2,DE=1,

  ∴AD=2,AC=AD+DC=4,

  由∠A=∠A,∠DEA=∠C=90°,得

  △ABC∽△ADE,

  ∴ =

  ∴ =

  ∴BC= .

  故選B.

  【點(diǎn)評】此題主要考查綜合解直角三角形的能力,也可根據(jù)相似三角形的性質(zhì)求解.

  5.一元二次方程(m﹣2)x2﹣4mx+2m﹣6=0有兩個(gè)相等的實(shí)數(shù)根,則m等于(  )

  A.﹣6或1 B.1 C.﹣6 D.2

  【考點(diǎn)】根的判別式;一元二次方程的定義.

  【分析】利用一元二次方程有相等的實(shí)數(shù)根,△=0,建立關(guān)于m的等式,再根據(jù)m﹣2≠0,求出m的值.

  【解答】解:∵一元二次方程(m﹣2)x2﹣4mx+2m﹣6=0有兩個(gè)相等的實(shí)數(shù)根,

  ∴△=16m2﹣4×(m﹣2)(2m﹣6)=0,且m﹣2≠0,

  ∴m2+5m﹣6=0,m≠2,

  ∴(m+6)(m﹣1)=0,

  解得:m1=﹣6,m2=1.

  故選A.

  【點(diǎn)評】本題考查了根的判別式,一元二次方程根的情況與判別式△的關(guān)系:

  (1)△>0⇔方程有兩個(gè)不相等的實(shí)數(shù)根;

  (2)△=0⇔方程有兩個(gè)相等的實(shí)數(shù)根;

  (3)△<0⇔方程沒有實(shí)數(shù)根.

  同時(shí)考查了一元二次方程的定義.

  6.已知x1、x2是方程x2﹣5x﹣6=0的兩個(gè)根,則代數(shù)式x12+x22的值是(  )

  A.37 B.26 C.13 D.10

  【考點(diǎn)】根與系數(shù)的關(guān)系.

  【分析】利用根與系數(shù)的關(guān)系可得x1+x2=﹣ =5,x1•x2= =﹣6,然后化簡代數(shù)式x12+x22=(x1+x2)2﹣2x1x2,再把前面的值代入即可求出.

  【解答】解:∵x1、x2是方程x2﹣5x﹣6=0的兩個(gè)根,

  ∴x1+x2=﹣ =5,x1•x2= =﹣6,

  ∴x12+x22=(x1+x2)2﹣2x1x2=25+12=37.

  故選A

  【點(diǎn)評】將根與系數(shù)的關(guān)系與代數(shù)式變形相結(jié)合解題是一種經(jīng)常使用的解題方法.一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系為:x1+x2=﹣ ,x1•x2= .

  7.如圖,小正方形的邊長均為1,則下列圖中的三角形與△ABC相似的是(  )

  A. B. C. D.

  【考點(diǎn)】相似三角形的判定.

  【專題】網(wǎng)格型.

  【分析】根據(jù)網(wǎng)格中的數(shù)據(jù)求出AB,AC,BC的長,求出三邊之比,利用三邊對應(yīng)成比例的兩三角形相似判斷即可.

  【解答】解:根據(jù)題意得:AB= = ,AC= ,BC=2,

  ∴AC:BC:AB= :2: =1: : ,

  A、三邊之比為1: :2 ,圖中的三角形與△ABC不相似;

  B、三邊之比為 : :3,圖中的三角形與△ABC不相似;

  C、三邊之比為1: : ,圖中的三角形與△ABC相似;

  D、三邊之比為2: : ,圖中的三角形與△ABC不相似.

  故選C.

  【點(diǎn)評】此題考查了相似三角形的判定,熟練掌握相似三角形的判定方法是解本題的關(guān)鍵.

  8.如圖,已知△ABC中,AB=AC=5,BC=8.則cosB的值是(  )

  A.1.25 B.0.8 C.0.6 D.0.625

  【考點(diǎn)】解直角三角形.

  【專題】計(jì)算題.

  【分析】作AD⊥BC于D,如圖,根據(jù)等腰三角形的性質(zhì)得BD= BC=4,然后在Rt△ABD中利用余弦的定義求解.

  【解答】解:作AD⊥BC于D,如圖,

  ∵AB=AC=5,

  ∴BD=CD= BC= ×8=4,

  在Rt△ABD中,cosB= = .

  故選B.

  【點(diǎn)評】本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.解直角三角形要用到的關(guān)系:銳角直角的關(guān)系:∠A+∠B=90°;三邊之間的關(guān)系:a2+b2=c2;邊角之間的關(guān)系:銳角三角函數(shù)關(guān)系.也考查了等腰三角形的性質(zhì).

  9.如圖,在△ABC中,點(diǎn)D在AB上,在下列四個(gè)條件中:①∠ACD=∠B;②∠ADC=∠ACB;③AC2=AD•AB;④AB•CD=AD•CB,能滿足△ADC與△ACB相似的條件是(  )

  A.①、②、③ B.①、③、④ C.②、③、④ D.①、②、④

  【考點(diǎn)】相似三角形的判定.

  【分析】由∠A是公共角,根據(jù)有兩組角對應(yīng)相等的兩個(gè)三角形相似與兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個(gè)三角形相似,判定△ABC與△ACD相似,即可得出結(jié)果.

  【解答】解:∵∠A是公共角,

  ∴當(dāng)∠ACD=∠B時(shí),△ADC∽△ACB(有兩組角對應(yīng)相等的兩個(gè)三角形相似);

  當(dāng)∠ADC=∠ACB時(shí),△ADC∽△ACB(有兩組角對應(yīng)相等的兩個(gè)三角形相似);

  當(dāng)AC2=AD•AB時(shí),即 ,△ADC∽△ACB(兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個(gè)三角形相似).

  當(dāng)AB•CD=AD•CB,即 時(shí),∠A不是夾角,則不能判定△ADC與△ACB相似;

  ∴能夠判定△ABC與△ACD相似的條件是:①②③.

  故選A.

  【點(diǎn)評】此題考查了相似三角形的判定.此題難度不大,熟記相似三角形的判定方法是解決問題的關(guān)鍵.

  10.如圖1,某超市從一樓到二樓有一自動(dòng)扶梯,圖2是側(cè)面示意圖.已知自動(dòng)扶梯AB的坡度為1:2.4,AB的長度是13米,MN是二樓樓頂,MN∥PQ,C是MN上處在自動(dòng)扶梯頂端B點(diǎn)正上方的一點(diǎn),BC⊥MN,在自動(dòng)扶梯底端A處測得C點(diǎn)的仰角為42°,則二樓的層高BC約為(精確到0.1米,sin42°≈0.67,tan42°≈0.90)(  )

  A.10.8米 B.8.9米 C.8.0米 D.5.8米

  【考點(diǎn)】解直角三角形的應(yīng)用-仰角俯角問題;解直角三角形的應(yīng)用-坡度坡角問題.

  【專題】幾何圖形問題.

  【分析】延長CB交PQ于點(diǎn)D,根據(jù)坡度的定義即可求得BD的長,然后在直角△CDA中利用三角函數(shù)即可求得CD的長,則BC即可得到.

  【解答】解:延長CB交PQ于點(diǎn)D.

  ∵M(jìn)N∥PQ,BC⊥MN,

  ∴BC⊥PQ.

  ∵自動(dòng)扶梯AB的坡度為1:2.4,

  ∴ = = .

  設(shè)BD=5k(米),AD=12k(米),則AB=13k(米).

  ∵AB=13(米),

  ∴k=1,

  ∴BD=5(米),AD=12(米).

  在Rt△CDA中,∠CDA=90゜,∠CAD=42°,

  ∴CD=AD•tan∠CAD≈12×0.90≈10.8(米),

  ∴BC=10.8﹣5≈5.8(米).

  故選:D.

  【點(diǎn)評】本題考查仰角和坡度的定義,要求學(xué)生能借助仰角構(gòu)造直角三角形并解直角三角形.

  二、填空題(本題共6小題,每小題3分,共18分)

  11.將方程x2+6x﹣3=0的左邊配成完全平方后所得方程為 (x+3)2 =12 .

  【考點(diǎn)】解一元二次方程-配方法.

  【專題】方程思想.

  【分析】首先移項(xiàng)變形成x2+6x=3的形式,然后方程兩邊同時(shí)加上一次項(xiàng)系數(shù)的一半的平方即可變形成左邊是完全平方式,右邊是常數(shù)的形式.

  【解答】解:∵x2+6x﹣3=0,

  ∴x2+6x=3,

  ∴x2+8x+9=9+3,

  ∴(x+3)2=12.

  故答案為:(x+3)2 =12.

  【點(diǎn)評】本題主要考查用配方法解一元二次方程,配方法的一般步驟:

  (1)把常數(shù)項(xiàng)移到等號(hào)的右邊;

  (2)把二次項(xiàng)的系數(shù)化為1;

  (3)等式兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.

  選擇用配方法解一元二次方程時(shí),最好使方程的二次項(xiàng)的系數(shù)為1,一次項(xiàng)的系數(shù)是2的倍數(shù).

  12.若 = ,且ab≠0,則 的值是 ﹣3 .

  【考點(diǎn)】比例的性質(zhì).

  【分析】首先根據(jù) = ,可得a= b,再把a(bǔ)= b代入 進(jìn)行計(jì)算.

  【解答】解:∵ = ,

  ∴a= b,

  ∴ = = =﹣3,

  故答案為:﹣3.

  【點(diǎn)評】此題主要考查了比例的性質(zhì),關(guān)鍵是正確用含b的代數(shù)式表示a.

  13.如果關(guān)于x的一元二次方程k2x2﹣(2k+1)x+1=0有兩個(gè)不相等的實(shí)數(shù)根,那么k的取值范圍是 k 且k≠0 .

  【考點(diǎn)】根的判別式;一元二次方程的定義.

  【專題】計(jì)算題.

  【分析】根據(jù)一元二次方程的定義和根的判別式的意義得到k2≠0且△=(2k+1)2﹣4k2>0,然后求出兩個(gè)不等式解的公共部分即可.

  【解答】解:根據(jù)題意得k2≠0且△=(2k+1)2﹣4k2>0,

  解得k>﹣ 且k≠0.

  故答案為k>﹣ 且k≠0.

  【點(diǎn)評】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2﹣4ac:當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒有實(shí)數(shù)根.也考查了一元二次方程的定義.

  14.如圖,在△ABC中,DE∥BC,DE與邊AB相交于點(diǎn)D,與邊AC相交于點(diǎn)E,如果AD=3,BD=4,AE=2,那么AC=   .

  【考點(diǎn)】平行線分線段成比例.

  【分析】由平行可得到 = ,代入可求得EC,再利用線段的和可求得AC.

  【解答】解:∵DE∥BC,

  ∴ = ,即 = ,

  解得EC= ,

  ∴AC=AE+EC=2+ = ,

  故答案為: .

  【點(diǎn)評】本題主要考查平行線分線段成比例,掌握平行線分線段所得線段對應(yīng)成比例是解題的關(guān)鍵.

  15.如圖,在△ABC中,點(diǎn)D,E分別在邊AB,AC上,且 = = ,則S△ADE:S四邊形BCED的值為 1:3 .

  【考點(diǎn)】相似三角形的判定與性質(zhì).

  【分析】首先根據(jù)兩邊對應(yīng)成比例且夾角相等的兩三角形相似,證得△ADE∽△ACB,再由相似三角形面積的比等于相似比的平方即可求得答案.

  【解答】解:∵在△ADE與△ACB中, = = ,∠A=∠A,

  ∴△ADE∽△ACB,

  ∴S△ADE:S△ACB=(AE:AB)2=1:4,

  ∴S△ADE:S四邊形BCED=1:3.

  故答案是:1:3.

  【點(diǎn)評】此題考查了相似三角形的判定與性質(zhì).注意相似三角形的面積的比等于相似比的平方.

  16.直角△ABC中,斜邊AB=5,直角邊BC、AC之長是一元二次方程x2﹣(2m﹣1)x+4(m﹣1)=0的兩根,則m的值為 4 .

  【考點(diǎn)】一元二次方程的應(yīng)用.

  【分析】先利用勾股定理表示出方程兩根之間的數(shù)量關(guān)系,即兩根的平方和是25,再根據(jù)根與系數(shù)的關(guān)系把有關(guān)字母的系數(shù)代入其中得到關(guān)于m的方程,解方程即可求出m的值.

  【解答】解:如圖.設(shè)BC=a,AC=b.

  根據(jù)題意得a+b=2m﹣1,ab=4(m﹣1).

  由勾股定理可知a2+b2=25,

  ∴a2+b2=(a+b)2﹣2ab=(2m﹣1)2﹣8(m﹣1)=4m2﹣12m+9=25,

  ∴4m2﹣12m﹣16=0,

  即m2﹣3m﹣4=0,

  解得m1=﹣1,m2=4.

  ∵a+b=2m﹣1>0,

  即m> ,

  ∴m=4.

  故答案為:4.

  【點(diǎn)評】本題考查了勾股定理及一元二次方程的應(yīng)用,要注意的是三角形的邊長都是正數(shù),所以最后要把解得的根代入到實(shí)際問題的條件中檢驗(yàn),將不合題意的解舍去.

  三、解答題(本題共6小題,共52分)

  17.計(jì)算:

  (1) ﹣3 ×( ﹣ )

  (2) ﹣ •

  (3)sin230°+2sin60°+tan45°﹣tan60°+cos230°.

  【考點(diǎn)】二次根式的混合運(yùn)算;特殊角的三角函數(shù)值.

  【專題】計(jì)算題.

  【分析】(1)先把各二次根式化為最簡二次根式,然后把括號(hào)內(nèi)合并后進(jìn)行二次根式的乘法運(yùn)算,再化簡后合并即可;

  (2)根據(jù)進(jìn)行二次根式的乘除法則運(yùn)算;

  (3)先根據(jù)特殊角的三角函數(shù)值得到原式=( )2+2× +1﹣ +( )2,然后進(jìn)行乘方運(yùn)算后合并即可.

  【解答】解:(1)原式=3 ﹣3 ( ﹣ )

  =3 ﹣2 •

  =3 ﹣

  = ;

  (2)原式= +1﹣

  =2+1﹣2

  =1;

  (3)原式=( )2+2× +1﹣ +( )2

  = + +1﹣ +

  =2.

  【點(diǎn)評】本題考查了二次根式的計(jì)算:先把各二次根式化為最簡二次根式,再進(jìn)行二次根式的乘除運(yùn)算,然后合并同類二次根式.在二次根式的混合運(yùn)算中,如能結(jié)合題目特點(diǎn),靈活運(yùn)用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.

  18.先化簡,再求值: ﹣ ÷(x+1﹣ ),其中x滿足x(x+2)=2+x.

  【考點(diǎn)】分式的化簡求值;解一元二次方程-因式分解法.

  【分析】先根據(jù)分式混合運(yùn)算的法則把原式進(jìn)行化簡,再把求出x的值代入進(jìn)行計(jì)算即可.

  【解答】解:原式= ﹣ ÷

  = ﹣ •

  = ﹣

  = ,

  ∵x(x+2)=2+x,

  ∴x1=1,x2=﹣2,

  當(dāng)x=﹣2時(shí)原式無意義;

  當(dāng)x=1時(shí),原式= = .

  【點(diǎn)評】本題考查的是分式的化簡求值,熟知分式混合運(yùn)算的法則是解答此題的關(guān)鍵.

  19.《中國足球改革總體方案》提出足球要進(jìn)校園,為了解某校學(xué)生對校園足球喜愛的情況,隨機(jī)對該校部分學(xué)生進(jìn)行了調(diào)查,將調(diào)查結(jié)果分為“很喜歡”、“較喜歡”、“一般”、“不喜歡”四個(gè)等級,并根據(jù)調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖;

  (1)一共調(diào)查了 30 名學(xué)生,請補(bǔ)全條形統(tǒng)計(jì)圖;

  (2)在此次調(diào)查活動(dòng)中,選擇“一般”的學(xué)生中只有兩人來自初三年級,現(xiàn)在要從選擇“一般”的同學(xué)中隨機(jī)抽取兩人來談?wù)劯髯詫π@足球的感想,請用畫樹狀圖或列表法求選中的兩人剛好都來自初三年級的概率.

  【考點(diǎn)】列表法與樹狀圖法;扇形統(tǒng)計(jì)圖;條形統(tǒng)計(jì)圖.

  【分析】(1)由題意即可得:一共調(diào)查的學(xué)生有:3÷10%=30(名);繼而求得:調(diào)查結(jié)果為“一般”的人數(shù):30﹣13﹣10﹣3=4(名).則可補(bǔ)全統(tǒng)計(jì)圖;

  (2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與選中的兩人剛好都來自初三年級的情況,再利用概率公式即可求得答案.

  【解答】解:(1)根據(jù)題意得:一共調(diào)查的學(xué)生有:3÷10%=30(名);

  調(diào)查結(jié)果為“一般”的人數(shù):30﹣13﹣10﹣3=4(名).

  故答案為:30;

  補(bǔ)全統(tǒng)計(jì)圖得:

  (2)用A,B分別表示來自初三年級的學(xué)生,C,D表示其他兩個(gè)學(xué)生,

  畫樹狀圖得:

  ∵共有12種等可能的結(jié)果,選中的兩人剛好都來自初三年級的有2種情況,

  ∴選中的兩人剛好都來自初三年級的概率為: = .

  【點(diǎn)評】此題考查了樹狀圖法與列表法求概率以及條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖的知識(shí).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.

  20.如圖,在Rt△ABC中,∠ABC=90°,CD⊥BC,BD與AC相交于點(diǎn)E,AB=9,BC=4,DC=3.

  (1)求BE的長度;

  (2)求△ABE的面積.

  【考點(diǎn)】相似三角形的判定與性質(zhì);勾股定理.

  【專題】計(jì)算題.

  【分析】(1)由CD⊥BC,得到∠DCB為直角,在直角三角形BCD中,利用勾股定理求出BD的長,根據(jù)AB與CD平行,得到三角形ABE與三角形CDE相似,由相似得比例,求出BE的長即可;

  (2)作EF垂直于AB,EH垂直于CD,由三角形ABE與三角形CDE相似,得比例,把BC的長代入求出EF的長,即可求出三角形ABE面積.

  【解答】解:(1)∵CD⊥BC,

  ∴∠DCB=90°,

  在Rt△BCD中,BC=4,DC=3,

  根據(jù)勾股定理得:BD= =5,

  ∵AB∥CD,

  ∴△ABE∽△CDE,

  ∴DC:AB=DE:BE=3:9=1:3,

  又∵BD=5,

  ∴BE= BD= ;

  (2)作EF⊥AB,EH⊥CD,

  ∵△ABE∽△CDE,

  ∴EF:EH=DC:AB=1:3,

  又∵BC=4,

  ∴FE= BC=3,

  則S△ABE=AB×EF× = .

  【點(diǎn)評】此題考查了相似三角形的判定與性質(zhì),以及勾股定理,熟練掌握相似三角形的判定與性質(zhì)是解本題的關(guān)鍵.

  21.如圖,在△ABC中,AD是△ABC的中線,tanB= ,cosC= ,AC=2 ,求sin∠ADC的值.

  【考點(diǎn)】解直角三角形.

  【分析】過點(diǎn)A作AH⊥BC,根據(jù)余弦定理和正切值分別求出AH、BH,再根據(jù)AD是△ABC的中線,求出DH,再根據(jù)勾股定理求出AD,從而求出sin∠ADC的值.

  【解答】解:過點(diǎn)A作AH⊥BC交BC與點(diǎn)H,

  ∵cosC= ,AC=2 ,

  ∴AH=2,

  ∵tanB= ,

  ∴BH=4,

  ∵AD是△ABC的中線,

  ∴DH=1,

  ∴AD= = = ,

  ∴sin∠ADC= = = .

  【點(diǎn)評】此題考查了解直角三角形,用到的知識(shí)點(diǎn)是銳角三角函數(shù)值、勾股定理,關(guān)鍵是根據(jù)題意作出輔助線,構(gòu)造直角三角形.

  22.某工程隊(duì)修建一條總長為1860米的公路,在使用舊設(shè)備施工17天后,為盡快完成任務(wù),工程隊(duì)引進(jìn)了新設(shè)備,從而將工作效率提高了50%,結(jié)果比原計(jì)劃提前15天完成任務(wù).

  (1)工程隊(duì)在使用新設(shè)備后每天能修路多少米?

  (2)在使用舊設(shè)備和新設(shè)備工作效率不變的情況下,工程隊(duì)計(jì)劃使用舊設(shè)備m天,使用新設(shè)備n(16≤n≤26)天修建一條總長為1500米的公路,使用舊設(shè)備一天需花費(fèi)16000元,使用新設(shè)備一天需花費(fèi)25000元,當(dāng)m、n分別為何值時(shí),修建這條公路的總費(fèi)用最少,并求出最少費(fèi)用.

  【考點(diǎn)】一次函數(shù)的應(yīng)用;分式方程的應(yīng)用.

  【分析】(1)設(shè)使用舊設(shè)備每天能修路x米,則使用新設(shè)備后每天能修路(1+50)x=1.5x(米),根據(jù)題意,列出方程 ,即可解答;

  (2)設(shè)修建這條公路的總費(fèi)用為W元,則W=16000m+25000n,由30m+45n=1500,得到m= ,則W=16000× +25000n=800000+1000n,根據(jù)16≤n≤26,利用一次函數(shù)的增減性即可解答.

  【解答】解:(1)設(shè)使用舊設(shè)備每天能修路x米,則使用新設(shè)備后每天能修路(1+50)x=1.5x(米),

  根據(jù)題意得: ,

  解得:x=30,

  當(dāng)x=30時(shí),1.5x≠0,

  ∴x=30是分式方程的解,

  1.5x=45,

  答;工程隊(duì)在使用新設(shè)備后每天能修路45米.

  (2)設(shè)修建這條公路的總費(fèi)用為W元,

  則W=16000m+25000n,

  ∵30m+45n=1500,

  ∴m= ,

  把m= 代入W=16000m+25000n得;

  W=16000× +25000n=800000+1000n,

  ∵k=1000>0,

  ∴W隨n的增大而增大,

  ∵16≤n≤26,

  ∴當(dāng)n=16時(shí),W有最小值,最小值為;800000+16000=816000(元),

  m= =26,

  答:當(dāng)m=26,n=16時(shí),修建這條公路的總費(fèi)用最少,最少費(fèi)用為816000元.

  【點(diǎn)評】本題考查了一次函數(shù)的應(yīng)用,解決本題的關(guān)鍵是利用一次函數(shù)的增減性解決最值問題.

  看了“九年級上冊數(shù)學(xué)期末測試卷”的人還看了:

1.初三數(shù)學(xué)上學(xué)期期末試題及答案

2.九年級數(shù)學(xué)上期末考試卷

3.九年級數(shù)學(xué)上期末考試題

4.初三數(shù)學(xué)上學(xué)期期末考試卷

5.初三數(shù)學(xué)上學(xué)期期末測試卷

2893314