高中高二數學的相關知識點總結
學習數學記得東西很多,如果單純的記憶每個公式,不但增加記憶量而且容易忘。下面是小編給大家?guī)淼?a href='http://m.rzpgrj.com/xuexiff/gaoershuxue/' target='_blank'>高二數學知識點,希望大家能夠喜歡!
高二數學的相關知識點1
1、導數的定義:在點處的導數記作.
2.導數的幾何物理意義:曲線在點處切線的斜率
①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。
3.常見函數的導數公式:①;②;③;
⑤;⑥;⑦;⑧。
4.導數的四則運算法則:
5.導數的應用:
(1)利用導數判斷函數的單調性:設函數在某個區(qū)間內可導,如果,那么為增函數;如果,那么為減函數;
注意:如果已知為減函數求字母取值范圍,那么不等式恒成立。
(2)求極值的步驟:
①求導數;
②求方程的根;
③列表:檢驗在方程根的左右的符號,如果左正右負,那么函數在這個根處取得極大值;如果左負右正,那么函數在這個根處取得極小值;
(3)求可導函數值與最小值的步驟:
ⅰ求的根;ⅱ把根與區(qū)間端點函數值比較,的為值,最小的是最小值。
高二數學的相關知識點2
復合函數定義域
若函數y=f(u)的定義域是B,u=g(x)的定義域是A,則復合函數y=f[g(x)]的定義域是D={x|x∈A,且g(x)∈B}綜合考慮各部分的x的取值范圍,取他們的交集。
求函數的定義域主要應考慮以下幾點:
⑴當為整式或奇次根式時,R的值域;
⑵當為偶次根式時,被開方數不小于0(即≥0);
⑶當為分式時,分母不為0;當分母是偶次根式時,被開方數大于0;
⑷當為指數式時,對零指數冪或負整數指數冪,底不為0。
⑸當是由一些基本函數通過四則運算結合而成的,它的定義域應是使各部分都有意義的自變量的值組成的集合,即求各部分定義域集合的交集。
⑹分段函數的定義域是各段上自變量的取值集合的并集。
⑺由實際問題建立的函數,除了要考慮使解析式有意義外,還要考慮實際意義對自變量的要求
⑻對于含參數字母的函數,求定義域時一般要對字母的取值情況進行分類討論,并要注意函數的定義域為非空集合。
⑼對數函數的真數必須大于零,底數大于零且不等于1。
⑽三角函數中的切割函數要注意對角變量的限制。
復合函數常見題型
(ⅰ)已知f(x)定義域為A,求f[g(x)]的定義域:實質是已知g(x)的范圍為A,以此求出x的范圍。
(ⅱ)已知f[g(x)]定義域為B,求f(x)的定義域:實質是已知x的范圍為B,以此求出g(x)的范圍。
(ⅲ)已知f[g(x)]定義域為C,求f[h(x)]的定義域:實質是已知x的范圍為C,以此先求出g(x)的范圍(即f(x)的定義域);然后將其作為h(x)的范圍,以此再求出x的范圍。
高二數學的相關知識點3
1)定義:
(2)函數存在反函數的條件:
(3)互為反函數的定義域與值域的關系:
(4)求反函數的步驟:①將看成關于的方程,解出,若有兩解,要注意解的選擇;②將互換,得;③寫出反函數的定義域(即的值域)。
(5)互為反函數的圖象間的關系:
(6)原函數與反函數具有相同的單調性;
(7)原函數為奇函數,則其反函數仍為奇函數;原函數為偶函數,它一定不存在反函數。
七、常用的初等函數:
(1)一元一次函數:
(2)一元二次函數:
一般式
兩點式
頂點式
二次函數求最值問題:首先要采用配方法,化為一般式,
有三個類型題型:
(1)頂點固定,區(qū)間也固定。如:
(2)頂點含參數(即頂點變動),區(qū)間固定,這時要討論頂點橫坐標何時在區(qū)間之內,何時在區(qū)間之外。
(3)頂點固定,區(qū)間變動,這時要討論區(qū)間中的參數.
等價命題在區(qū)間上有兩根在區(qū)間上有兩根在區(qū)間或上有一根
注意:若在閉區(qū)間討論方程有實數解的情況,可先利用在開區(qū)間上實根分布的情況,得出結果,在令和檢查端點的情況。
(3)反比例函數:
(4)指數函數:
指數函數:y=(a>o,a≠1),圖象恒過點(0,1),單調性與a的值有關,在解題中,往往要對a分a>1和0
(5)對數函數:
對數函數:y=(a>o,a≠1)圖象恒過點(1,0),單調性與a的值有關,在解題中,往往要對a分a>1和0
高中高二數學的相關知識點總結




