高三數(shù)學(xué)總單元知識點(diǎn)概括
數(shù)學(xué)一般方法主要是數(shù)學(xué)解題的具體方法及相關(guān)技能、技巧,比如高中數(shù)學(xué)里的配方法、換元法、待定系數(shù)法和判別式法等。以下是小編給大家整理的高三數(shù)學(xué)總單元知識點(diǎn)概括,希望能助你一臂之力!
高三數(shù)學(xué)總單元知識點(diǎn)概括1
一、排列
1定義
(1)從n個不同元素中取出m個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一排列。
(2)從n個不同元素中取出m個元素的所有排列的個數(shù),叫做從n個不同元素中取出m個元素的排列數(shù),記為Amn.
2排列數(shù)的公式與性質(zhì)
(1)排列數(shù)的公式:Amn=n(n-1)(n-2)…(n-m+1)
特例:當(dāng)m=n時,Amn=n!=n(n-1)(n-2)…×3×2×1
規(guī)定:0!=1
二、組合
1定義
(1)從n個不同元素中取出m個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合
(2)從n個不同元素中取出m個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù),用符號Cmn表示。
2比較與鑒別
由排列與組合的定義知,獲得一個排列需要“取出元素”和“對取出元素按一定順序排成一列”兩個過程,而獲得一個組合只需要“取出元素”,不管怎樣的順序并成一組這一個步驟。
排列與組合的區(qū)別在于組合僅與選取的元素有關(guān),而排列不僅與選取的元素有關(guān),而且還與取出元素的順序有關(guān)。因此,所給問題是否與取出元素的順序有關(guān),是判斷這一問題是排列問題還是組合問題的理論依據(jù)。
三、排列組合與二項(xiàng)式定理知識點(diǎn)
1.計(jì)數(shù)原理知識點(diǎn)
①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分類)
2.排列(有序)與組合(無序)
Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!
Cnm=n!/(n-m)!m!
Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!
3.排列組合混合題的解題原則:先選后排,先分再排
排列組合題的主要解題方法:優(yōu)先法:以元素為主,應(yīng)先滿足特殊元素的要求,再考慮其他元素.以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置.
捆綁法(集團(tuán)元素法,把某些必須在一起的元素視為一個整體考慮)
插空法(解決相間問題)間接法和去雜法等等
在求解排列與組合應(yīng)用問題時,應(yīng)注意:
(1)把具體問題轉(zhuǎn)化或歸結(jié)為排列或組合問題;
(2)通過分析確定運(yùn)用分類計(jì)數(shù)原理還是分步計(jì)數(shù)原理;
(3)分析題目條件,避免“選取”時重復(fù)和遺漏;
(4)列出式子計(jì)算和作答.
經(jīng)常運(yùn)用的數(shù)學(xué)思想是:
①分類討論思想;②轉(zhuǎn)化思想;③對稱思想.
4.二項(xiàng)式定理知識點(diǎn):
①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn
特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
②主要性質(zhì)和主要結(jié)論:對稱性Cnm=Cnn-m
二項(xiàng)式系數(shù)在中間。(要注意n為奇數(shù)還是偶數(shù),答案是中間一項(xiàng)還是中間兩項(xiàng))
所有二項(xiàng)式系數(shù)的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n
奇數(shù)項(xiàng)二項(xiàng)式系數(shù)的和=偶數(shù)項(xiàng)而是系數(shù)的和
Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1
③通項(xiàng)為第r+1項(xiàng):Tr+1=Cnran-rbr作用:處理與指定項(xiàng)、特定項(xiàng)、常數(shù)項(xiàng)、有理項(xiàng)等有關(guān)問題。
5.二項(xiàng)式定理的應(yīng)用:解決有關(guān)近似計(jì)算、整除問題,運(yùn)用二項(xiàng)展開式定理并且結(jié)合放縮法證明與指數(shù)有關(guān)的不等式。
6.注意二項(xiàng)式系數(shù)與項(xiàng)的系數(shù)(字母項(xiàng)的系數(shù),指定項(xiàng)的系數(shù)等,指運(yùn)算結(jié)果的系數(shù))的區(qū)別,在求某幾項(xiàng)的系數(shù)的和時注意賦值法的應(yīng)用。
高三數(shù)學(xué)總單元知識點(diǎn)概括2
(1)不等關(guān)系
感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實(shí)際背景。
(2)一元二次不等式
①經(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過程。
②通過函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系。
③會解一元二次不等式,對給定的一元二次不等式,嘗試設(shè)計(jì)求解的程序框圖。
(3)二元一次不等式組與簡單線性規(guī)劃問題
①從實(shí)際情境中抽象出二元一次不等式組。
②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組(參見例2)。
③從實(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決(參見例3)。
(4)基本不等式:
①探索并了解基本不等式的證明過程。
②會用基本不等式解決簡單的(小)值問題。
高三數(shù)學(xué)總單元知識點(diǎn)概括3
1、圓柱體:
表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:
表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、正方體
a-邊長,S=6a2,V=a3
4、長方體
a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
5、棱柱
S-底面積h-高V=Sh
6、棱錐
S-底面積h-高V=Sh/3
7、棱臺
S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3
8、擬柱體
S1-上底面積,S2-下底面積,S0-中截面積
h-高,V=h(S1+S2+4S0)/6
9、圓柱
r-底半徑,h-高,C—底面周長
S底—底面積,S側(cè)—側(cè)面積,S表—表面積C=2πr
S底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱
R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)
11、直圓錐
r-底半徑h-高V=πr^2h/3
12、圓臺
r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3
13、球
r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球臺
r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
16、圓環(huán)體
R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑
V=2π2Rr2=π2Dd2/4
17、桶狀體
D-桶腹直徑d-桶底直徑h-桶高
V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
高三數(shù)學(xué)總單元知識點(diǎn)概括相關(guān)文章:
★ 高三數(shù)學(xué)知識點(diǎn)總結(jié)歸納
★ 高三數(shù)學(xué)知識點(diǎn)總結(jié)
★ 高三年級數(shù)學(xué)知識點(diǎn)整理總結(jié)
★ 高三數(shù)學(xué)重點(diǎn)知識總結(jié)大全
★ 高三數(shù)學(xué)知識點(diǎn)總結(jié)大全
★ 人教版高三數(shù)學(xué)知識點(diǎn)總結(jié)