高中數(shù)學(xué)導(dǎo)數(shù)難題解題技巧
導(dǎo)數(shù)是高考數(shù)學(xué)必考的內(nèi)容,近年來(lái)高考加大了對(duì)以導(dǎo)數(shù)為載體的知識(shí)問(wèn)題的考查,題型在難度、深度和廣度上不斷地加大、加深,從而使得導(dǎo)數(shù)相關(guān)知識(shí)愈發(fā)顯得重要。下面是小編為大家整理的關(guān)于高中數(shù)學(xué)導(dǎo)數(shù)難題解題技巧,希望對(duì)您有所幫助。歡迎大家閱讀參考學(xué)習(xí)!
1高中數(shù)學(xué)導(dǎo)數(shù)難題解題技巧
1.導(dǎo)數(shù)在判斷函數(shù)的單調(diào)性、最值中的應(yīng)用
利用導(dǎo)數(shù)來(lái)求函數(shù)的最值的一般步驟是:(1)先根據(jù)求導(dǎo)公式對(duì)函數(shù)求出函數(shù)的導(dǎo)數(shù);(2)解出令函數(shù)的導(dǎo)數(shù)等于0的自變量;(3)從導(dǎo)數(shù)性質(zhì)得出函數(shù)的單調(diào)區(qū)間;(4)通過(guò)定義域從單調(diào)區(qū)間中求出函數(shù)最值。
2.導(dǎo)數(shù)在函數(shù)極值中的應(yīng)用
利用導(dǎo)數(shù)的知識(shí)來(lái)求函數(shù)極值是高中數(shù)學(xué)問(wèn)題比較常見(jiàn)的類型。利用導(dǎo)數(shù)求函數(shù)極值的一般步驟是:(1)首先根據(jù)求導(dǎo)法則求出函數(shù)的導(dǎo)數(shù);(2)令函數(shù)的導(dǎo)數(shù)等于0,從而解出導(dǎo)函數(shù)的零點(diǎn);(3)從導(dǎo)函數(shù)的零點(diǎn)個(gè)數(shù)來(lái)分區(qū)間討論,得到函數(shù)的單調(diào)區(qū)間;(4)根據(jù)極值點(diǎn)的定義來(lái)判斷函數(shù)的極值點(diǎn),最后再求出函數(shù)的極值。
3.導(dǎo)數(shù)在求參數(shù)的取值范圍時(shí)的應(yīng)用
利用導(dǎo)數(shù)求函數(shù)中的某些參數(shù)的取值范圍,成為近年來(lái)高考的熱點(diǎn)。在一般函數(shù)含參數(shù)的題中,通過(guò)運(yùn)用導(dǎo)數(shù)來(lái)化簡(jiǎn)函數(shù),可以更快速地求出參數(shù)的取值范圍。
2高中數(shù)學(xué)解題中導(dǎo)數(shù)的妙用
導(dǎo)數(shù)知識(shí)在函數(shù)解題中的妙用
函數(shù)知識(shí)是高中數(shù)學(xué)的重點(diǎn)內(nèi)容,其中包括極值、圖像、奇偶性、單調(diào)性等方面的分析,具有代表性的題型就是極值的計(jì)算和單調(diào)性的分析,按照普通的解題過(guò)程是通過(guò)圖像來(lái)分析,可是對(duì)于較難的函數(shù)來(lái)說(shuō),制作圖像不僅浪費(fèi)時(shí)間,而且極容易出錯(cuò),而在函數(shù)解題中應(yīng)用導(dǎo)數(shù)簡(jiǎn)直就是手到擒來(lái)。
例如:函數(shù)f(x)=x3+3x2+9x+a,分析f(x)的單調(diào)性。這是高中數(shù)學(xué)中常見(jiàn)的三次函數(shù),在對(duì)這道題目進(jìn)行單調(diào)性分析時(shí),很多學(xué)生根據(jù)思維定式會(huì)采用常規(guī)的手法畫圖去分析單調(diào)區(qū)間,但由于未知數(shù)a的存在而遇到困難。如果考慮用導(dǎo)數(shù)的相關(guān)知識(shí)解決這一問(wèn)題,解:f’(x)=-3x2+6x+9,令f’(x)>0,那么解得x<-1或者x>3,也就是說(shuō)函數(shù)在(-∞,-1),(3,+∞)這個(gè)單調(diào)區(qū)間上單調(diào)遞減,這樣就能非常容易的判斷函數(shù)的單調(diào)性。
導(dǎo)數(shù)知識(shí)在方程求根解題中的妙用
導(dǎo)數(shù)知識(shí)在方程求根中的應(yīng)用屬于一項(xiàng)重點(diǎn)內(nèi)容,在平時(shí)的數(shù)學(xué)練習(xí)中以及高考的考察中均曾以不同的難度形式出現(xiàn)過(guò)。導(dǎo)數(shù)知識(shí)能針對(duì)方程求根,根據(jù)導(dǎo)函數(shù)的求解能判斷原函數(shù)的根的個(gè)數(shù)。在解這一類問(wèn)題的時(shí)候,教師要善于引導(dǎo)學(xué)生利用導(dǎo)函數(shù)與X軸的交點(diǎn)個(gè)數(shù)來(lái)判斷方程根的個(gè)數(shù)。
例如,某一證明問(wèn)題:方程x-sinx=0,只有一個(gè)根x=0。在分析這一問(wèn)題時(shí)實(shí)際上就是利用函數(shù)的單調(diào)性質(zhì)和特殊值來(lái)確定f(x)=0。其證明過(guò)程需首先利用到導(dǎo)數(shù)知識(shí),令f(x)=x-sinx,定義域?yàn)镽,求導(dǎo)f(x)=1-cosx>0,再利用函數(shù)單調(diào)性及數(shù)形結(jié)合思想,求得x=0是次方程的根。此內(nèi)容的應(yīng)用就是最為典型的導(dǎo)數(shù)知識(shí)在方程求根中的應(yīng)用。
3高中數(shù)學(xué)的解題技巧
學(xué)會(huì)審題,才會(huì)解題
很多考生對(duì)審題重視不夠,往往要做的題目都沒(méi)有看清楚就急于下筆,審好題是做題的關(guān)鍵,審題一一定要逐字逐句的看清楚,通過(guò)審題發(fā)現(xiàn)題目有無(wú)易漏、易錯(cuò)點(diǎn),只有仔細(xì)審題才能從題目中獲取更多的信息,只有挖掘題目中的隱含條件、啟發(fā)解題思路,提醒常見(jiàn)解題誤區(qū)和自己易出現(xiàn)的錯(cuò)誤,才能提高解題能力。只有認(rèn)真的審題,謹(jǐn)慎的態(tài)度,才能準(zhǔn)確地揣摩出題者的意圖,發(fā)現(xiàn)更多的信息,從而快速找到解題方向。
考前保持頭腦清醒,要摒棄雜念,不斷進(jìn)行積極的心理暗示,創(chuàng)設(shè)寬松的氛圍,創(chuàng)設(shè)數(shù)學(xué)情境,進(jìn)而醞釀數(shù)學(xué)思維,靜能生慧,滿懷信心的進(jìn)行針對(duì)性的自我安慰,以平穩(wěn)自信、積極主動(dòng)的心態(tài)準(zhǔn)備應(yīng)考。這就要求我們要善于觀察。
先做簡(jiǎn)單題,后做難題
從我們的心理學(xué)角度來(lái)講,一般拿到試卷以后,心情比較緊張,此時(shí)不要急于下手解題,可以先對(duì)試題多少、分布、難易程度從頭到尾瀏覽一遍,做題要先易后難,做到心中有數(shù),一般簡(jiǎn)單的題目占全卷60%,這是很重要的一部分分?jǐn)?shù),見(jiàn)到簡(jiǎn)單題要細(xì)心解題,盡量使用數(shù)學(xué)語(yǔ)言,而且要更加嚴(yán)謹(jǐn)以振奮精神,養(yǎng)成良好的審題習(xí)慣鼓舞信心。
如果順序做題既耗費(fèi)時(shí)間又拿不到分,會(huì)做的題又被耽誤了。所以先做簡(jiǎn)單題,多年的經(jīng)驗(yàn)告訴我們,當(dāng)你解題不順利時(shí),更要冷靜,靜下心來(lái),沉住氣,根據(jù)自己的實(shí)際情況,果斷跳過(guò)自己不會(huì)做的題目,把簡(jiǎn)單的都做完,如果我們能把這部分的分?jǐn)?shù)拿到,就已經(jīng)打了勝仗,再集中精力做比較難的題,有了勝利的信心,面對(duì)住偏難的題更要有耐心,不要著急,可以先放棄,但也要注意認(rèn)真對(duì)待每一道題,不能走馬觀花,要相信自己。到應(yīng)有的分?jǐn)?shù)。最好還有善于把難題轉(zhuǎn)換成簡(jiǎn)單的題目的能力。
4高中數(shù)學(xué)的解題技巧
審題技巧
審題是正確解題的關(guān)鍵,是對(duì)題目進(jìn)行分析、綜合、尋求解題思路和方法的過(guò)程,審題過(guò)程包括明確條件與目標(biāo)、分析條件與目標(biāo)的聯(lián)系、確定解題思路與方法三部分。(1)條件的分析,一是找出題目中明確告訴的已知條件,二是發(fā)現(xiàn)題目的隱含條件并加以揭示。目標(biāo)的分析,主要是明確要求什么或要證明什么;把復(fù)雜的目標(biāo)轉(zhuǎn)化為簡(jiǎn)單的目標(biāo);把抽象目標(biāo)轉(zhuǎn)化為具體的目標(biāo);把不易把握的目標(biāo)轉(zhuǎn)化為可把握的目標(biāo)。
(2)分析條件與目標(biāo)的聯(lián)系。每個(gè)數(shù)學(xué)問(wèn)題都是由若干條件與目標(biāo)組成的。解題者在閱讀題目的基礎(chǔ)上,需要找一找從條件到目標(biāo)缺少些什么?或從條件順推,或從目標(biāo)分析,或畫出關(guān)聯(lián)的草圖并把條件與目標(biāo)標(biāo)在圖上,找出它們的內(nèi)在聯(lián)系,以順利實(shí)現(xiàn)解題的目標(biāo)。(3)確定解題思路。一個(gè)題目的條件與目標(biāo)之間存在著一系列必然的聯(lián)系,這些聯(lián)系是由條件通向目標(biāo)的橋梁。用哪些聯(lián)系解題,需要根據(jù)這些聯(lián)系所遵循的數(shù)學(xué)原理確定。解題的實(shí)質(zhì)就是分析這些聯(lián)系與哪個(gè)數(shù)學(xué)原理相匹配。
類型題掌握,提升發(fā)散性
學(xué)習(xí)的過(guò)程也是知識(shí)的積累過(guò)程,所以,不論是哪一學(xué)科,都不能期待能一朝實(shí)現(xiàn)學(xué)校目標(biāo),而數(shù)學(xué)亦是如此。所以,在日常解答某些類型數(shù)學(xué)題的時(shí)候,對(duì)其題型加以掌握,這是提高學(xué)生解題能力,培養(yǎng)學(xué)生解題技巧的重要途徑之一,并且效果良好。
但是有一點(diǎn)我們必須銘記,類型習(xí)題的整理和記憶是指對(duì)其解題思路的記憶,并不是對(duì)其解答過(guò)程的記憶。假如一位學(xué)生只是對(duì)這道題的解題過(guò)程加以記錄,不去分析,不去思考其解答方式的亮點(diǎn),那么即使他整理再多的習(xí)題,也無(wú)法取得應(yīng)有的效果,只會(huì)將學(xué)習(xí)停留在表面。
高中數(shù)學(xué)導(dǎo)數(shù)難題解題技巧相關(guān)文章:
2.高中數(shù)學(xué)六種解題技巧與五種數(shù)學(xué)答題思路
4.高中數(shù)學(xué)導(dǎo)數(shù)練習(xí)題及答案
5.高中數(shù)學(xué)導(dǎo)數(shù)測(cè)試題及答案
6.高二數(shù)學(xué)學(xué)習(xí)方法指導(dǎo)與學(xué)習(xí)方法總結(jié)
7.高二數(shù)學(xué):學(xué)習(xí)方法推薦 導(dǎo)數(shù)如何學(xué)