做數(shù)學壓軸題的技巧初中
很多同學說在解答壓軸題的時候,會感到壓力很大,找不到解題思路。確實不同類型的壓軸題所對應的解題思想也存在很大的差異。下面給大家分享一些關(guān)于做數(shù)學壓軸題的技巧初中,希望對大家有所幫助。
01分類討論題
分類討論在數(shù)學題中經(jīng)常以最后壓軸題的方式出現(xiàn),以下幾點是需要大家注意分類討論的:
1、熟知直角三角形的直角,等腰三角形的腰與角以及圓的對稱性,根據(jù)圖形的特殊性質(zhì),找準討論對象,逐一解決。在探討等腰或直角三角形存在時,一定要按照一定的原則,不要遺漏,最后要綜合。
2、討論點的位置一定要看清點所在的范圍,是在直線上,還是在射線或者線段上。
3、圖形的對應關(guān)系多涉及到三角形的全等或相似問題,對其中可能出現(xiàn)的有關(guān)角、邊的可能對應情況加以分類討論。
4、代數(shù)式變形中如果有絕對值、平方時,里面的數(shù)開出來要注意正負號的取舍。
5、考查點的取值情況或范圍。這部分多是考查自變量的取值范圍的分類,解題中應十分注意性質(zhì)、定理的使用條件及范圍。
6、函數(shù)題目中如果說函數(shù)圖象與坐標軸有交點,那么一定要討論這個交點是和哪一個坐標軸的哪一半軸的交點。
7、由動點問題引出的函數(shù)關(guān)系,當運動方式改變后(比如從一條線段移動到另一條線段)時,所寫的函數(shù)應該進行分段討論。
值得注意的是:在列出所有需要討論的可能性之后,要仔細審查是否每種可能性都會存在,是否有需要舍去的。
最常見的就是一元二次方程如果有兩個不等實根,那么我們就要看看是不是這兩個根都能保留。
02四個秘訣
切入點一:做不出、找相似,有相似、用相似
壓軸題牽涉到的知識點較多,知識轉(zhuǎn)化的難度較高。學生往往不知道該怎樣入手,這時往往應根據(jù)題意去尋找相似三角形。
切入點二:構(gòu)造定理所需的圖形或基本圖形
在解決問題的過程中,有時添加輔助線是必不可少的,幾乎都遵循這樣一個原則:構(gòu)造定理所需的圖形或構(gòu)造一些常見的基本圖形。
切入點三:緊扣不變量
在圖形運動變化時,圖形的位置、大小、方向可能都有所改變,但在此過程中,往往有某兩條線段,或某兩個角或某兩個三角形所對應的位置或數(shù)量關(guān)系不發(fā)生改變。
切入點四:在題目中尋找多解的信息
圖形在運動變化,可能滿足條件的情形不止一種,也就是通常所說的兩解或多解,如何避免漏解也是一個令考生頭痛的問題。
其實多解的信息在題目中就可以找到,這就需要我們深度的挖掘題干,實際上就是反復認真的審題。
03答題技巧
1、定位準確防止 “撿芝麻丟西瓜”
在心中一定要給壓軸題或幾個“難點”一個時間上的限制,如果超過你設置的上限,必須要停止,回頭認真檢查前面的題,盡量要保證選擇、填空萬無一失,前面的解答題盡可能的檢查一遍。
2、解數(shù)學壓軸題做一問是一問
第一問對絕大多數(shù)同學來說,不是問題;如果第一小問不會解,切忌不可輕易放棄第二小問。
過程會多少寫多少,因為數(shù)學解答題是按步驟給分的,字跡要工整,布局要合理;
盡量多用幾何知識,少用代數(shù)計算,盡量用三角函數(shù),少在直角三角形中使用相似三角形的性質(zhì)。
04壓軸題技巧
縱觀全國各地的中考數(shù)學試卷,數(shù)學綜合題關(guān)鍵是第22題和23題,我們不妨把它分為函數(shù)型綜合題和幾何型綜合題。
(一)函數(shù)型綜合題
是先給定直角坐標系和幾何圖形,求(已知)函數(shù)的解析式(即在求解前已知函數(shù)的類型),然后進行圖形的研究,求點的坐標或研究圖形的某些性質(zhì)。
初中已知函數(shù)有:
①一次函數(shù)(包括正比例函數(shù))和常值函數(shù),它們所對應的圖像是直線;
②反比例函數(shù),它所對應的圖像是雙曲線;
③二次函數(shù),它所對應的圖像是拋物線。求已知函數(shù)的解析式主要方法是待定系數(shù)法,關(guān)鍵是求點的坐標,而求點的坐標基本方法是幾何法(圖形法)和代數(shù)法(解析法)。
(二)幾何型綜合題
先給定幾何圖形,根據(jù)已知條件進行計算,然后有動點(或動線段)運動,對應產(chǎn)生線段、面積等的變化。
求對應的(未知)函數(shù)的解析式(即在沒有求出之前不知道函數(shù)解析式的形式是什么)和求函數(shù)的定義域,最后根據(jù)所求的函數(shù)關(guān)系進行探索研究,一般有:
在什么條件下圖形是等腰三角形、直角三角形、四邊形是菱形、梯形等;
探索兩個三角形滿足什么條件相似等;
探究線段之間的位置關(guān)系等;
探索面積之間滿足一定關(guān)系求x的值等和直線(圓)與圓的相切時求自變量的值等。
求未知函數(shù)解析式的關(guān)鍵是列出包含自變量和因變量之間的等量關(guān)系(即列出含有x、y的方程),變形寫成y=f(x)的形式。
一般有直接法(直接列出含有x和y的方程)和復合法(列出含有x和y和第三個變量的方程,然后求出第三個變量和x之間的函數(shù)關(guān)系式,代入消去第三個變量,得到y(tǒng)=f(x)的形式),當然還有參數(shù)法,這個已超出初中數(shù)學教學要求。
找等量關(guān)系的途徑在初中主要有利用勾股定理、平行線截得比例線段、三角形相似、面積相等方法。求定義域主要是尋找圖形的特殊位置(極限位置)和根據(jù)解析式求解。
而最后的探索問題千變?nèi)f化,但少不了對圖形的分析和研究,用幾何和代數(shù)的方法求出x的值。
在解數(shù)學綜合題時我們要做到:數(shù)形結(jié)合記心頭,大題小作來轉(zhuǎn)化,潛在條件不能忘,化動為靜多畫圖,分類討論要嚴密,方程函數(shù)是工具,計算推理要嚴謹,創(chuàng)新品質(zhì)得提高。
做數(shù)學壓軸題的技巧初中相關(guān)文章:
做數(shù)學壓軸題的技巧初中
上一篇:做數(shù)學壓軸題的技巧高中
下一篇:做數(shù)學需要思路方法